Av(1234, 1342, 2413, 2431, 4213)
Generating Function
\(\displaystyle -\frac{x^{10}+4 x^{9}+4 x^{8}+3 x^{7}-7 x^{6}-5 x^{5}+x^{3}+5 x^{2}-4 x +1}{\left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 51, 117, 248, 501, 984, 1900, 3629, 6881, 12980, 24390, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{10}+4 x^{9}+4 x^{8}+3 x^{7}-7 x^{6}-5 x^{5}+x^{3}+5 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 51\)
\(\displaystyle a \! \left(6\right) = 117\)
\(\displaystyle a \! \left(7\right) = 248\)
\(\displaystyle a \! \left(8\right) = 501\)
\(\displaystyle a \! \left(9\right) = 984\)
\(\displaystyle a \! \left(10\right) = 1900\)
\(\displaystyle a \! \left(n +5\right) = \frac{3 n^{2}}{2}-a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)-\frac{43 n}{2}+34, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 51\)
\(\displaystyle a \! \left(6\right) = 117\)
\(\displaystyle a \! \left(7\right) = 248\)
\(\displaystyle a \! \left(8\right) = 501\)
\(\displaystyle a \! \left(9\right) = 984\)
\(\displaystyle a \! \left(10\right) = 1900\)
\(\displaystyle a \! \left(n +5\right) = \frac{3 n^{2}}{2}-a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)-\frac{43 n}{2}+34, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ \frac{\left(\left(\left(3520 \,\mathrm{I}-860 \sqrt{11}\right) \sqrt{3}-2580 \,\mathrm{I} \sqrt{11}+3520\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+9680+\left(\left(6325 \,\mathrm{I}+1015 \sqrt{11}\right) \sqrt{3}-3045 \,\mathrm{I} \sqrt{11}-6325\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{5280}\\+\\\frac{\left(\left(\left(-6325 \,\mathrm{I}+1015 \sqrt{11}\right) \sqrt{3}+3045 \,\mathrm{I} \sqrt{11}-6325\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+9680+\left(\left(-3520 \,\mathrm{I}-860 \sqrt{11}\right) \sqrt{3}+2580 \,\mathrm{I} \sqrt{11}+3520\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{5280}\\+\\\frac{\left(\left(-2030 \sqrt{11}\, \sqrt{3}+12650\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+1720 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{11}\, \sqrt{3}-7040 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+9680\right) \left(\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{1}{3}+\frac{17 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}}{4}\right)^{-n}}{5280}\\+\frac{\left(4752 \sqrt{5}-13200\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{5280}+\\\frac{\left(-4752 \sqrt{5}-13200\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{5280}+\frac{3 n^{2}}{4}-\frac{37 n}{4}+\frac{23}{2} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 66 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 66 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{37}\! \left(x \right) &= 0\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{42}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{42}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{55}\! \left(x \right)\\
\end{align*}\)