Av(1234, 1342, 2413, 2431, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(x +1\right) \left(x^{6}+x^{5}-7 x^{4}+3 x^{3}-4 x^{2}+3 x -1\right)}{\left(x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 114, 256, 575, 1278, 2815, 6191, 13617, 29929, 65741, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2} F \! \left(x \right)-\left(x +1\right) \left(x^{6}+x^{5}-7 x^{4}+3 x^{3}-4 x^{2}+3 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 114\)
\(\displaystyle a \! \left(7\right) = 256\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)+3 a \! \left(n +1\right)+2 a \! \left(n +2\right)+a \! \left(n +3\right)+a \! \left(4+n \right)+8 n +18, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{54525 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n +1}}{51569}\\+\\\frac{298386 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n +2}}{360983}\\+\\\frac{302706 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n +3}}{360983}\\+\\\frac{123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n +4}}{360983}\\+\\\frac{\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3}-369189 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}-246126 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+258612\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{-n +1}}{360983}\\+\\\frac{\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}-369189 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+52260\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{-n +2}}{360983}\\+\\\frac{\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{-n +3}}{360983}\\+\\\frac{\left(\left(123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}+\left(123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+435672 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+199449\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+199449 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+391578\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{-n +1}}{360983}\\+\\\frac{\left(\left(123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{-n +2}}{360983}\\+\\\frac{\left(\left(\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+\left(-66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-251709 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-363549\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)^{-n +1}}{360983}\\+\\\frac{121362 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n}}{360983}\\+\\\frac{\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{4}-369189 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3}-246126 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-1701\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{-n}}{360983}\\+\\\frac{\left(\left(123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{3}+\left(123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+435672 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+199449\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}+\left(123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3}+435672 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+445575 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+132966\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3}+199449 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+132966 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+64782\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{-n}}{360983}\\+\\\frac{\left(\left(\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}+\left(\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+\left(-123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}-502155 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-451158\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}-451158 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-755127\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+\left(-66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+\left(-66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}-451158 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-755127\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-251709 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}-755127 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-438636\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)^{-n}}{360983}\\+\\\frac{\left(\left(\left(\left(123063 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+66483\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+\left(66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+251709 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+363549\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+\left(\left(66483 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+251709\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+251709 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+363549\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+\left(251709 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+363549\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+363549 \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)+652011\right) \mathit{RootOf}\left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =5\right)^{-n}}{360983}\\-\frac{8 n}{7}-\frac{54}{49} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 55 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 55 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{38}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{41}\! \left(x \right)\\ \end{align*}\)