Av(1234, 1342, 2341, 3124, 4123)
Generating Function
\(\displaystyle \frac{-\left(x -1\right)^{5} \sqrt{-4 x +1}+x^{5}-7 x^{4}+10 x^{3}-10 x^{2}+5 x -1}{2 x \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 167, 499, 1556, 5072, 17126, 59281, 208727, 743901, 2675805, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{10} F \left(x
\right)^{2}-\left(x^{5}-7 x^{4}+10 x^{3}-10 x^{2}+5 x -1\right) \left(x -1\right)^{5} F \! \left(x \right)+x^{10}-10 x^{9}+44 x^{8}-114 x^{7}+200 x^{6}-242 x^{5}+205 x^{4}-119 x^{3}+45 x^{2}-10 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(2 n +1\right) a \! \left(n \right)}{n +2}-\frac{n \left(n -1\right) \left(3 n +2\right) \left(n -4\right) \left(n +1\right)}{24 \left(n +2\right)}, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(2 n +1\right) a \! \left(n \right)}{n +2}-\frac{n \left(n -1\right) \left(3 n +2\right) \left(n -4\right) \left(n +1\right)}{24 \left(n +2\right)}, \quad n \geq 7\)
This specification was found using the strategy pack "Requirement Placements Tracked Fusion" and has 71 rules.
Found on July 23, 2021.Finding the specification took 10 seconds.
Copy 71 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{1}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{2}\! \left(x \right) &= 1\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= x\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{33}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x , 1\right)\\
F_{48}\! \left(x , y\right) &= F_{49}\! \left(x , y\right)\\
F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)\\
F_{50}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{51}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\
F_{51}\! \left(x , y\right) &= F_{52}\! \left(x , y\right)+F_{70}\! \left(x , y\right)\\
F_{52}\! \left(x , y\right) &= F_{36}\! \left(x \right)+F_{53}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{54}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\
F_{54}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)\\
F_{55}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{56}\! \left(x , y\right)\\
F_{56}\! \left(x , y\right) &= F_{54}\! \left(x , y\right)+F_{57}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{59}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= y x\\
F_{60}\! \left(x , y\right) &= F_{2}\! \left(x \right)+F_{57}\! \left(x , y\right)\\
F_{61}\! \left(x , y\right) &= 2 F_{15}\! \left(x \right)+F_{62}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\
F_{62}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{63}\! \left(x , y\right)\\
F_{63}\! \left(x , y\right) &= F_{61}\! \left(x , y\right)+F_{64}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= F_{15}\! \left(x \right)+F_{65}\! \left(x , y\right)+F_{67}\! \left(x , y\right)\\
F_{65}\! \left(x , y\right) &= F_{59}\! \left(x , y\right) F_{66}\! \left(x , y\right)\\
F_{66}\! \left(x , y\right) &= F_{3}\! \left(x \right)+F_{64}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{68}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)+F_{64}\! \left(x , y\right)\\
F_{69}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{53}\! \left(x , y\right)\\
F_{70}\! \left(x , y\right) &= \frac{y F_{49}\! \left(x , y\right)-F_{49}\! \left(x , 1\right)}{-1+y}\\
\end{align*}\)