Av(1234, 1342, 2143, 3241, 4132)
Generating Function
\(\displaystyle \frac{2 x^{13}+4 x^{12}-3 x^{11}-11 x^{10}-5 x^{9}+12 x^{8}+10 x^{7}-15 x^{6}-5 x^{5}+3 x^{4}+3 x^{3}+2 x^{2}-3 x +1}{\left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 48, 99, 204, 414, 820, 1598, 3078, 5878, 11153, 21056, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+2 x^{13}+4 x^{12}-3 x^{11}-11 x^{10}-5 x^{9}+12 x^{8}+10 x^{7}-15 x^{6}-5 x^{5}+3 x^{4}+3 x^{3}+2 x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 48\)
\(\displaystyle a \! \left(6\right) = 99\)
\(\displaystyle a \! \left(7\right) = 204\)
\(\displaystyle a \! \left(8\right) = 414\)
\(\displaystyle a \! \left(9\right) = 820\)
\(\displaystyle a \! \left(10\right) = 1598\)
\(\displaystyle a \! \left(11\right) = 3078\)
\(\displaystyle a \! \left(12\right) = 5878\)
\(\displaystyle a \! \left(13\right) = 11153\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)-5 n +11, \quad n \geq 14\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 48\)
\(\displaystyle a \! \left(6\right) = 99\)
\(\displaystyle a \! \left(7\right) = 204\)
\(\displaystyle a \! \left(8\right) = 414\)
\(\displaystyle a \! \left(9\right) = 820\)
\(\displaystyle a \! \left(10\right) = 1598\)
\(\displaystyle a \! \left(11\right) = 3078\)
\(\displaystyle a \! \left(12\right) = 5878\)
\(\displaystyle a \! \left(13\right) = 11153\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)-5 n +11, \quad n \geq 14\)
Explicit Closed Form
\(\displaystyle 3-\frac{2349 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{220}-\frac{6121 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{220}-\frac{2993 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{110}-\frac{1143 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{220}+\frac{4167 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{220}-\frac{5 n}{2}+\left(\left\{\begin{array}{cc}-2 & n =0 \\ -1 & n =1\text{ or } n =2\text{ or } n =3 \\ 1 & n =4 \\ 4 & n =5 \\ 2 & n =6 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 108 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 108 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{34}\! \left(x \right) &= 0\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{42}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{43}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{47}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{50}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{65}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{69}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= x^{2}\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{43}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{83}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{69}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{56}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{50}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{56}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{102}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{56}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{103}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{104}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{56}\! \left(x \right)\\
\end{align*}\)