Av(1234, 1342, 2143, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{9}-x^{7}+6 x^{5}-10 x^{4}+15 x^{3}-14 x^{2}+6 x -1}{\left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 61, 170, 448, 1142, 2849, 7002, 17023, 41049, 98360, 234504, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{9}-x^{7}+6 x^{5}-10 x^{4}+15 x^{3}-14 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 61\)
\(\displaystyle a \! \left(6\right) = 170\)
\(\displaystyle a \! \left(7\right) = 448\)
\(\displaystyle a \! \left(8\right) = 1142\)
\(\displaystyle a \! \left(9\right) = 2849\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)-8 a \! \left(n +2\right)+5 a \! \left(n +3\right)-2 n +5, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle 5-2 n -\frac{1461 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-5 Z^{3}+8 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{92}+\frac{1545 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-5 Z^{3}+8 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{46}-\frac{4503 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-5 Z^{3}+8 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{92}+\frac{1561 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-5 Z^{3}+8 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{92}-\frac{\left(\left\{\begin{array}{cc}\frac{77}{8} & n =0 \\ \frac{37}{4} & n =1 \\ \frac{9}{2} & n =2 \\ 1 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)}{2}\)

This specification was found using the strategy pack "Point Placements" and has 104 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 104 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{30}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{46}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{60}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{80}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{46}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{89}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{30}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{69}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{60}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{75}\! \left(x \right)\\ \end{align*}\)