Av(1234, 1342, 2143, 3214, 4231)
Generating Function
\(\displaystyle -\frac{4 x^{11}-11 x^{10}+6 x^{9}+7 x^{8}-10 x^{7}+7 x^{6}+x^{5}-4 x^{4}-4 x^{2}+3 x -1}{\left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 46, 85, 144, 224, 320, 438, 580, 748, 944, 1170, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{4} F \! \left(x \right)+4 x^{11}-11 x^{10}+6 x^{9}+7 x^{8}-10 x^{7}+7 x^{6}+x^{5}-4 x^{4}-4 x^{2}+3 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 46\)
\(\displaystyle a \! \left(6\right) = 85\)
\(\displaystyle a \! \left(7\right) = 144\)
\(\displaystyle a \! \left(8\right) = 224\)
\(\displaystyle a \! \left(9\right) = 320\)
\(\displaystyle a \! \left(10\right) = 438\)
\(\displaystyle a \! \left(11\right) = 580\)
\(\displaystyle a \! \left(n \right) = \frac{\left(-1+n \right) \left(n^{2}+7 n -24\right)}{3}, \quad n \geq 12\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 46\)
\(\displaystyle a \! \left(6\right) = 85\)
\(\displaystyle a \! \left(7\right) = 144\)
\(\displaystyle a \! \left(8\right) = 224\)
\(\displaystyle a \! \left(9\right) = 320\)
\(\displaystyle a \! \left(10\right) = 438\)
\(\displaystyle a \! \left(11\right) = 580\)
\(\displaystyle a \! \left(n \right) = \frac{\left(-1+n \right) \left(n^{2}+7 n -24\right)}{3}, \quad n \geq 12\)
Explicit Closed Form
\(\displaystyle 8-\frac{31 n}{3}+\frac{n^{3}}{3}+2 n^{2}+\left(\left\{\begin{array}{cc}-7 & n =0 \\ 1 & n =1 \\ 4 & n =2 \\ 2 & n =3 \\ -1 & n =4 \\ -2 & n =5 \\ -5 & n =6 \\ -4 & n =7 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 92 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 92 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{31}\! \left(x \right) &= 0\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{36}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{57}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{36}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{65}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{87}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{88}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{48}\! \left(x \right)\\
\end{align*}\)