Av(1234, 1342, 2143, 3214, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{3 x^{8}+2 x^{7}-7 x^{6}-2 x^{5}+4 x^{4}+2 x^{3}-2 x +1}{\left(x -1\right) \left(x^{2}+2 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 47, 109, 263, 636, 1536, 3709, 8955, 21620, 52196, 126013, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{2}+2 x -1\right) F \! \left(x \right)+3 x^{8}+2 x^{7}-7 x^{6}-2 x^{5}+4 x^{4}+2 x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 47\)
\(\displaystyle a \! \left(6\right) = 109\)
\(\displaystyle a \! \left(7\right) = 263\)
\(\displaystyle a \! \left(8\right) = 636\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)+2 a \! \left(n +1\right)+1, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left(\left\{\begin{array}{cc}-59 & n =0 \\ 25 & n =1 \\ -11 & n =2 \\ 3 & n =3 \\ -1 & n =4 \\ 3 & n =5 \\ 0 & \text{otherwise} \end{array}\right.\right)-\frac{1}{2}+21 \left(-1-\sqrt{2}\right)^{-n} \sqrt{2}-21 \left(\sqrt{2}-1\right)^{-n} \sqrt{2}+\frac{121 \left(-1-\sqrt{2}\right)^{-n}}{4}+\frac{121 \left(\sqrt{2}-1\right)^{-n}}{4}\)

This specification was found using the strategy pack "Point Placements" and has 83 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 83 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{24}\! \left(x \right) &= 0\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{37}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{52}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{53}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{35}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{29}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{34}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{76}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{74}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= x^{2}\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)