Av(1234, 1342, 2143, 2431, 4213)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{14}+3 x^{13}-5 x^{12}-9 x^{11}+5 x^{10}+15 x^{9}+7 x^{8}-30 x^{7}+8 x^{6}+9 x^{5}-x^{3}-5 x^{2}+4 x -1}{\left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 47, 96, 202, 416, 837, 1655, 3229, 6235, 11942, 22725, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{14}+3 x^{13}-5 x^{12}-9 x^{11}+5 x^{10}+15 x^{9}+7 x^{8}-30 x^{7}+8 x^{6}+9 x^{5}-x^{3}-5 x^{2}+4 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 47\)
\(\displaystyle a \! \left(6\right) = 96\)
\(\displaystyle a \! \left(7\right) = 202\)
\(\displaystyle a \! \left(8\right) = 416\)
\(\displaystyle a \! \left(9\right) = 837\)
\(\displaystyle a \! \left(10\right) = 1655\)
\(\displaystyle a \! \left(11\right) = 3229\)
\(\displaystyle a \! \left(12\right) = 6235\)
\(\displaystyle a \! \left(13\right) = 11942\)
\(\displaystyle a \! \left(14\right) = 22725\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)-\frac{n \left(-5+n \right)}{2}, \quad n \geq 15\)
Explicit Closed Form
\(\displaystyle -\frac{752 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{55}-\frac{7827 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{220}-\frac{1908 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{55}-\frac{743 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{110}+\frac{5249 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{220}-\frac{n^{2}}{4}+\frac{3 n}{4}-\frac{1}{2}+\left(\left\{\begin{array}{cc}3 & n =0 \\ 1 & n =1 \\ -1 & n =3 \\ 1 & n =4 \\ 4 & n =5 \\ 1 & n =6 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 94 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 94 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{38}\! \left(x \right) &= 0\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{46}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{59}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{46}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{59}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right)\\ \end{align*}\)