Av(1234, 1342, 2143, 2341, 3142)
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(x^{6}-x^{5}+3 x^{4}-2 x^{3}+5 x^{2}-4 x +1\right)}{\left(x^{3}-2 x^{2}+3 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 54, 146, 386, 1006, 2592, 6615, 16748, 42119, 105318, 262045, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-2 x^{2}+3 x -1\right)^{2} F \! \left(x \right)+\left(x -1\right) \left(x^{6}-x^{5}+3 x^{4}-2 x^{3}+5 x^{2}-4 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 146\)
\(\displaystyle a \! \left(7\right) = 386\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+4 a \! \left(n +1\right)-10 a \! \left(n +2\right)+14 a \! \left(n +3\right)-13 a \! \left(n +4\right)+6 a \! \left(n +5\right), \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 146\)
\(\displaystyle a \! \left(7\right) = 386\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+4 a \! \left(n +1\right)-10 a \! \left(n +2\right)+14 a \! \left(n +3\right)-13 a \! \left(n +4\right)+6 a \! \left(n +5\right), \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(-345 \,2^{\frac{1}{3}} \left(\left(\left(\frac{n}{3}+\frac{169}{115}\right) \sqrt{23}+\mathrm{I} n -\frac{111 \,\mathrm{I}}{5}\right) \sqrt{3}+\left(\mathrm{I} n +\frac{507 \,\mathrm{I}}{115}\right) \sqrt{23}+n -\frac{111}{5}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}-2760 \left(\left(\left(\frac{n}{12}-\frac{29}{46}\right) \sqrt{23}+\mathrm{I} n +\frac{3 \,\mathrm{I}}{4}\right) \sqrt{3}+\left(-\frac{\mathrm{I} n}{4}+\frac{87 \,\mathrm{I}}{46}\right) \sqrt{23}-n -\frac{3}{4}\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+13800 n +317400\right) \left(\frac{11 \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{317400}\\+\\\frac{\left(2760 \left(\left(\left(-\frac{n}{12}+\frac{29}{46}\right) \sqrt{23}+\mathrm{I} n +\frac{3 \,\mathrm{I}}{4}\right) \sqrt{3}+\left(-\frac{\mathrm{I} n}{4}+\frac{87 \,\mathrm{I}}{46}\right) \sqrt{23}+n +\frac{3}{4}\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+345 \,2^{\frac{1}{3}} \left(\left(\left(-\frac{n}{3}-\frac{169}{115}\right) \sqrt{23}+\mathrm{I} n -\frac{111 \,\mathrm{I}}{5}\right) \sqrt{3}+\left(\mathrm{I} n +\frac{507 \,\mathrm{I}}{115}\right) \sqrt{23}-n +\frac{111}{5}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+13800 n +317400\right) \left(-\frac{11 \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{317400}\\+\\\frac{\left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n} \left(2 \left(\sqrt{3}\, \left(n -\frac{174}{23}\right) \sqrt{23}-12 n -9\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\sqrt{3}\, \left(n +\frac{507}{115}\right) \sqrt{23}+3 n -\frac{333}{5}\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+60 n +1380\right)}{1380} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 65 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 65 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{22}\! \left(x \right) &= 0\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{40}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{40}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{53}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{49}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{47}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{40}\! \left(x \right)+F_{49}\! \left(x \right)\\
\end{align*}\)