Av(1234, 1342, 1432, 2143, 3241)
Generating Function
\(\displaystyle -\frac{4 x^{11}+5 x^{10}+3 x^{9}-6 x^{8}-10 x^{7}-2 x^{6}+6 x^{5}+6 x^{4}+x^{3}-2 x +1}{\left(x -1\right) \left(2 x^{4}+2 x^{3}+x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 51, 124, 290, 671, 1528, 3428, 7619, 16810, 36854, 80383, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(2 x^{4}+2 x^{3}+x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+4 x^{11}+5 x^{10}+3 x^{9}-6 x^{8}-10 x^{7}-2 x^{6}+6 x^{5}+6 x^{4}+x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 51\)
\(\displaystyle a \! \left(6\right) = 124\)
\(\displaystyle a \! \left(7\right) = 290\)
\(\displaystyle a \! \left(8\right) = 671\)
\(\displaystyle a \! \left(9\right) = 1528\)
\(\displaystyle a \! \left(10\right) = 3428\)
\(\displaystyle a \! \left(11\right) = 7619\)
\(\displaystyle a \! \left(n +7\right) = -2 a \! \left(n \right)-4 a \! \left(n +1\right)-5 a \! \left(n +2\right)-2 a \! \left(n +3\right)+a \! \left(n +4\right)+a \! \left(n +5\right)+2 a \! \left(n +6\right)+6, \quad n \geq 12\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 51\)
\(\displaystyle a \! \left(6\right) = 124\)
\(\displaystyle a \! \left(7\right) = 290\)
\(\displaystyle a \! \left(8\right) = 671\)
\(\displaystyle a \! \left(9\right) = 1528\)
\(\displaystyle a \! \left(10\right) = 3428\)
\(\displaystyle a \! \left(11\right) = 7619\)
\(\displaystyle a \! \left(n +7\right) = -2 a \! \left(n \right)-4 a \! \left(n +1\right)-5 a \! \left(n +2\right)-2 a \! \left(n +3\right)+a \! \left(n +4\right)+a \! \left(n +5\right)+2 a \! \left(n +6\right)+6, \quad n \geq 12\)
Explicit Closed Form
\(\displaystyle \frac{5781104 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +6}\right)}{480975}+\frac{8669303 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +5}\right)}{480975}+\frac{974791 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{64130}-\frac{4735211 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{480975}-\frac{1995629 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{87450}-\frac{1008349 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{87450}-\frac{5848969 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{480975}+\frac{11266609 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{8}+2 Z^{7}+Z^{6}-3 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{961950}-\left(\left\{\begin{array}{cc}-\frac{1}{4} & n =0 \\ \frac{1}{2} & n =2 \\ 2 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 112 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 112 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{22}\! \left(x \right) &= 0\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{27}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= x^{2}\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{48}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{60}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{70}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{83}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{48}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{80}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{92}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{27}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{70}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{22}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{106}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{106}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{107}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{111}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{75}\! \left(x \right)\\
\end{align*}\)