Av(1234, 1342, 1432, 2143, 3124)
View Raw Data
Generating Function
\(\displaystyle -\frac{2 x -1}{2 x^{5}-2 x^{4}-x^{3}+x^{2}-3 x +1}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 148, 418, 1185, 3353, 9482, 26818, 75859, 214577, 606948, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{5}-2 x^{4}-x^{3}+x^{2}-3 x +1\right) F \! \left(x \right)+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)+2 a \! \left(n +1\right)+a \! \left(n +2\right)-a \! \left(n +3\right)+3 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{928 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +3}}{14873}-\frac{928 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +3}}{14873}-\frac{928 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +3}}{14873}-\frac{928 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +3}}{14873}-\frac{928 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +3}}{14873}-\frac{201 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +2}}{14873}-\frac{201 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +2}}{14873}-\frac{201 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +2}}{14873}-\frac{201 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +2}}{14873}-\frac{201 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +2}}{14873}+\frac{1133 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +1}}{14873}+\frac{1133 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +1}}{14873}+\frac{1133 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +1}}{14873}+\frac{1133 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +1}}{14873}+\frac{1133 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +1}}{14873}+\frac{855 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n -1}}{29746}+\frac{855 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n -1}}{29746}+\frac{855 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n -1}}{29746}+\frac{855 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n -1}}{29746}+\frac{855 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n -1}}{29746}+\frac{5515 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n}}{29746}+\frac{5515 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n}}{29746}+\frac{5515 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n}}{29746}+\frac{5515 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n}}{29746}+\frac{5515 \mathit{RootOf} \left(2 Z^{5}-2 Z^{4}-Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n}}{29746}\)

This specification was found using the strategy pack "Point Placements" and has 55 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 55 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{34}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{34}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{33}\! \left(x \right)\\ \end{align*}\)