Av(1234, 1342, 1423, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(x -1\right) \left(x^{3}+2 x -1\right)}{3 x^{8}+2 x^{7}+7 x^{6}-3 x^{3}+4 x^{2}-4 x +1}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 179, 519, 1527, 4520, 13371, 39493, 116611, 344408, 1017403, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(3 x^{8}+2 x^{7}+7 x^{6}-3 x^{3}+4 x^{2}-4 x +1\right) F \! \left(x \right)-\left(x -1\right) \left(x^{3}+2 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 179\)
\(\displaystyle a \! \left(7\right) = 519\)
\(\displaystyle a \! \left(n +2\right) = -\frac{3 a \! \left(n \right)}{7}-\frac{2 a \! \left(n +1\right)}{7}+\frac{3 a \! \left(n +5\right)}{7}-\frac{4 a \! \left(n +6\right)}{7}+\frac{4 a \! \left(n +7\right)}{7}-\frac{a \! \left(n +8\right)}{7}, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle -\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n +6}}{6376103820167}-\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n +6}}{6376103820167}-\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n +6}}{6376103820167}-\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n +6}}{6376103820167}-\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n +6}}{6376103820167}-\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n +6}}{6376103820167}-\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n +6}}{6376103820167}-\frac{464499637617 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n +6}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n +5}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n +5}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n +5}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n +5}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n +5}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n +5}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n +5}}{6376103820167}-\frac{651720613613 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n +5}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n +4}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n +4}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n +4}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n +4}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n +4}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n +4}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n +4}}{6376103820167}-\frac{1672021747407 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n +4}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n +3}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n +3}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n +3}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n +3}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n +3}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n +3}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n +3}}{6376103820167}-\frac{1116134092031 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n +3}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n +2}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n +2}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n +2}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n +2}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n +2}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n +2}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n +2}}{6376103820167}-\frac{573894224382 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n +2}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n +1}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n +1}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n +1}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n +1}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n +1}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n +1}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n +1}}{6376103820167}+\frac{414701348644 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n +1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n -1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n -1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n -1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n -1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n -1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n -1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n -1}}{6376103820167}+\frac{388056335030 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n -1}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =1\right)^{-n}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =2\right)^{-n}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =3\right)^{-n}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =4\right)^{-n}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =5\right)^{-n}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =6\right)^{-n}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =7\right)^{-n}}{6376103820167}+\frac{531311999764 \mathit{RootOf} \left(3 Z^{8}+2 Z^{7}+7 Z^{6}-3 Z^{3}+4 Z^{2}-4 Z +1, \mathit{index} =8\right)^{-n}}{6376103820167}\)

This specification was found using the strategy pack "Point Placements" and has 75 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 75 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{44}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{45}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{52}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{64}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{41}\! \left(x \right)\\ \end{align*}\)