Av(1234, 1342, 1423, 2413, 4213)
View Raw Data
Generating Function
\(\displaystyle -\frac{5 x^{6}-7 x^{5}+10 x^{4}-15 x^{3}+14 x^{2}-6 x +1}{\left(2 x -1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 156, 417, 1078, 2712, 6675, 16142, 38484, 90695, 211730, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+5 x^{6}-7 x^{5}+10 x^{4}-15 x^{3}+14 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 156\)
\(\displaystyle a \! \left(n +4\right) = n^{2}-2 a \! \left(n \right)+a \! \left(n +1\right)-4 a \! \left(n +2\right)+4 a \! \left(n +3\right)-n +4, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{469 \left(-\frac{11328 \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,3^{\frac{1}{6}} 2^{\frac{1}{3}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{81}-\frac{\left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{9}+\frac{16 \,\mathrm{I} \sqrt{3}}{27}-\frac{16}{27}\right)^{-n} \left(-\frac{2048 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{2048 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{3}+\frac{\left(\left(-256 \,\mathrm{I} \sqrt{59}-768\right) 18^{\frac{1}{3}}+2304 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+256 \,3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{3}\right)^{n}}{67}-\left(\left(-\frac{5664 n^{2}}{469}-\frac{36816}{469}\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}-\frac{531 \left(\mathrm{I}-\frac{469 \sqrt{59}}{1593}\right) \sqrt{3}\, \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{469}-\frac{5723 \sqrt{3}\, \left(\mathrm{I}+\frac{219 \sqrt{59}}{5723}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{5628}+3^{\frac{1}{3}} 2^{\frac{2}{3}} \left(\mathrm{I} \sqrt{59}-\frac{531}{469}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{17936}{469}+\frac{219 \left(\mathrm{I} \sqrt{59}+\frac{5723}{657}\right) 2^{\frac{1}{3}} 3^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{938}\right) \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{331776}-\frac{\left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{36864}+\frac{\mathrm{I} \sqrt{3}}{6912}-\frac{1}{6912}\right)^{-n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,3^{\frac{1}{6}} 2^{\frac{1}{3}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}+\left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n} \left(\frac{2 \left(-27648 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+27648 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(3456 \,\mathrm{I} \sqrt{59}-10368\right) 18^{\frac{1}{3}}-31104 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+3456 \,3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n} \left(\sqrt{59}\, 16^{n} 3^{\frac{1}{2}+n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}}-\frac{219 \sqrt{59}\, 16^{n} 3^{\frac{1}{2}+n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}}}{1876}+\frac{5723 \left(3^{n +\frac{2}{3}} 2^{4 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{18 \,3^{\frac{4}{3}+n} 2^{4 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{97}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}}}{938}\right) \left(384 \left(\mathrm{I} \,3^{\frac{5}{6}}-3^{\frac{1}{3}}\right) 2^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+96 \,2^{\frac{1}{3}} \left(3^{\frac{1}{6}} \sqrt{59}-3 \,3^{\frac{2}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(-576 \,\mathrm{I}-192 \sqrt{3}\right) \sqrt{59}+1728 \,\mathrm{I} \sqrt{3}+1728\right)^{-n}}{3}+\left(-\frac{531 \left(\frac{469 \sqrt{59}}{1593}+\mathrm{I}\right) \sqrt{3}\, \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{469}-\frac{5723 \left(-\frac{219 \sqrt{59}}{5723}+\mathrm{I}\right) \sqrt{3}\, \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{5628}+\frac{219 \left(\mathrm{I} \sqrt{59}-\frac{5723}{657}\right) 2^{\frac{1}{3}} 3^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{938}+3^{\frac{1}{3}} \left(\frac{531}{469}+\mathrm{I} \sqrt{59}\right) 2^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{17936}{469}+\frac{17936 \left(\frac{8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-8 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-\mathrm{I} \sqrt{59}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{-16 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(2 \,3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}-6 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}\right)^{n}}{469}\right) \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{331776}-\frac{\left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{36864}+\frac{\mathrm{I} \sqrt{3}}{6912}-\frac{1}{6912}\right)^{-n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}}\right)\right) \left(\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+9 \left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-48 \,\mathrm{I} \sqrt{3}-48\right)^{-n}}{11328}\)

This specification was found using the strategy pack "Point Placements" and has 83 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 83 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{35}\! \left(x \right) &= 0\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{55}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{55}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{58}\! \left(x \right)\\ \end{align*}\)