Av(1234, 1342, 1423, 1432, 2314)
Generating Function
\(\displaystyle -\frac{\left(2 x -1\right) \left(x -1\right)}{x^{4}+2 x^{3}-4 x^{2}+4 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 166, 480, 1389, 4025, 11670, 33838, 98111, 284457, 824730, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{4}+2 x^{3}-4 x^{2}+4 x -1\right) F \! \left(x \right)+\left(2 x -1\right) \left(x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = a \! \left(n \right)+2 a \! \left(n +1\right)-4 a \! \left(n +2\right)+4 a \! \left(n +3\right), \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = a \! \left(n \right)+2 a \! \left(n +1\right)-4 a \! \left(n +2\right)+4 a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle -\frac{\left(-352080000 \left(\frac{\sqrt{120 \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(18 \sqrt{163}\, \sqrt{3}-294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+26400}}{120}+\frac{\left(-49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-2200\right) \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}+\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n}+\left(\left(\left(\left(\frac{2282 \sqrt{3}}{5}-\frac{62 \sqrt{163}}{5}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(1630 \sqrt{3}-350 \sqrt{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-310 \sqrt{163}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(2691 \sqrt{163}\, \sqrt{3}+60147\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-31230 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-70200 \sqrt{163}\, \sqrt{3}+689490 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+\left(\left(-7172 \sqrt{3}+1152 \sqrt{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(-21190 \sqrt{3}-810 \sqrt{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-130400 \sqrt{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(40860 \sqrt{163}\, \sqrt{3}-205380\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+138600 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-4987800 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-363816000\right) \left(-\frac{\sqrt{120 \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(18 \sqrt{163}\, \sqrt{3}-294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+26400}}{120}+\frac{\left(-49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-2200\right) \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}+\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n}+\left(\left(\left(\left(\left(\frac{571 \,\mathrm{I} \sqrt{3}}{40}+\frac{1421}{120}\right) \sqrt{163}-\frac{28379 \,\mathrm{I}}{120}+\frac{18419 \sqrt{3}}{120}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(-\frac{1177}{6}-\mathrm{I} \sqrt{3}\right) \sqrt{163}-\frac{2806 \,\mathrm{I}}{3}+\frac{7987 \sqrt{3}}{6}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{30065 \,\mathrm{I}}{3}-\frac{1585 \sqrt{163}}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(414 \,\mathrm{I}+2901 \sqrt{3}\right) \sqrt{163}-2604 \,\mathrm{I} \sqrt{3}+1467\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(-315 \,\mathrm{I}-14655 \sqrt{3}\right) \sqrt{163}-7485 \,\mathrm{I} \sqrt{3}+432765\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-740100 \sqrt{3}\, \left(\mathrm{I}+\frac{215 \sqrt{163}}{2467}\right)\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+\left(\left(\left(\frac{331 \,\mathrm{I} \sqrt{3}}{3}-1228\right) \sqrt{163}-1141 \,\mathrm{I}+\frac{15974 \sqrt{3}}{3}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(-\frac{595 \,\mathrm{I} \sqrt{3}}{3}-1225\right) \sqrt{163}+10595 \,\mathrm{I}+\frac{101875 \sqrt{3}}{3}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{1400 \left(\mathrm{I} \sqrt{163}+\frac{7661}{7}\right) \sqrt{3}}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(61290 \,\mathrm{I}-20430 \sqrt{3}\right) \sqrt{163}-102690 \,\mathrm{I} \sqrt{3}+102690\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-363816000+\left(\left(-207900 \,\mathrm{I}-69300 \sqrt{3}\right) \sqrt{163}+2493900 \,\mathrm{I} \sqrt{3}+2493900\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(-\frac{\mathrm{I} \sqrt{120 \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(-18 \sqrt{163}\, \sqrt{3}+294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}-26400}}{120}+\frac{\left(49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+2200\right) \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}-\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n}+\left(\frac{\mathrm{I} \sqrt{120 \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(-18 \sqrt{163}\, \sqrt{3}+294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}-26400}}{120}+\frac{\left(49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+2200\right) \sqrt{\left(120 \sqrt{163}\, 2^{\frac{1}{3}} \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}-\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n} \left(\left(\left(\left(\left(\frac{1421}{120}-\frac{571 \,\mathrm{I} \sqrt{3}}{40}\right) \sqrt{163}+\frac{28379 \,\mathrm{I}}{120}+\frac{18419 \sqrt{3}}{120}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(-\frac{1177}{6}+\mathrm{I} \sqrt{3}\right) \sqrt{163}+\frac{2806 \,\mathrm{I}}{3}+\frac{7987 \sqrt{3}}{6}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{30065 \,\mathrm{I}}{3}-\frac{1585 \sqrt{163}}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(-414 \,\mathrm{I}+2901 \sqrt{3}\right) \sqrt{163}+2604 \,\mathrm{I} \sqrt{3}+1467\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(315 \,\mathrm{I}-14655 \sqrt{3}\right) \sqrt{163}+7485 \,\mathrm{I} \sqrt{3}+432765\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+740100 \left(\mathrm{I}-\frac{215 \sqrt{163}}{2467}\right) \sqrt{3}\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+\left(\left(\left(-\frac{331 \,\mathrm{I} \sqrt{3}}{3}-1228\right) \sqrt{163}+1141 \,\mathrm{I}+\frac{15974 \sqrt{3}}{3}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(\frac{595 \,\mathrm{I} \sqrt{3}}{3}-1225\right) \sqrt{163}-10595 \,\mathrm{I}+\frac{101875 \sqrt{3}}{3}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{1400 \left(\mathrm{I} \sqrt{163}-\frac{7661}{7}\right) \sqrt{3}}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(-61290 \,\mathrm{I}-20430 \sqrt{3}\right) \sqrt{163}+102690 \,\mathrm{I} \sqrt{3}+102690\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-363816000+\left(\left(207900 \,\mathrm{I}-69300 \sqrt{3}\right) \sqrt{163}-2493900 \,\mathrm{I} \sqrt{3}+2493900\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}\right)\right) \left(\left(\left(\left(\sqrt{3}-\frac{43 \sqrt{163}}{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\frac{2 \sqrt{3}}{5}-\frac{16 \sqrt{163}}{815}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{20 \sqrt{163}}{163}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}-\frac{4140 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}}{163}+\frac{306 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}}{163}-\frac{7200 \sqrt{163}\, \sqrt{3}}{163}+540 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+54 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+648000+\left(\left(40 \sqrt{3}-\frac{120 \sqrt{163}}{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(8 \sqrt{3}-\frac{264 \sqrt{163}}{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-400 \sqrt{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}\right)}{912591360000000}\)
This specification was found using the strategy pack "Point Placements" and has 127 rules.
Found on January 18, 2022.Finding the specification took 4 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 127 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{19}\! \left(x \right) &= 0\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{37}\! \left(x \right)+F_{64}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{47}\! \left(x \right)+F_{51}\! \left(x \right)+F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{62}\! \left(x \right) &= 0\\
F_{63}\! \left(x \right) &= 0\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{58}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{80}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= x^{2}\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= x^{2}\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{122}\! \left(x \right)+F_{19}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{106}\! \left(x \right)+F_{114}\! \left(x \right)+F_{115}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{101}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{111}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{114}\! \left(x \right) &= 0\\
F_{115}\! \left(x \right) &= 0\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{75}\! \left(x \right)\\
\end{align*}\)