Av(1234, 13254, 21354, 21435, 21453, 21534, 21543, 23154, 31254, 32154)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{3}-4 x +1}{\left(x -1\right) \left(x^{3}-x^{2}-4 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 23, 94, 391, 1633, 6827, 28548, 119384, 499255, 2087854, 8731285, 36513737, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{3}-x^{2}-4 x +1\right) F \! \left(x \right)+x^{3}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = -a \! \left(n \right)+a \! \left(n +1\right)+4 a \! \left(n +2\right)-2, \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{\left(\left(\left(312 \,\mathrm{I}+312 \sqrt{3}\right) \sqrt{107}+5564 \,\mathrm{I} \sqrt{3}-5564\right) \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}+289328+\left(\left(69 \,\mathrm{I}-69 \sqrt{3}\right) \sqrt{107}-535 \,\mathrm{I} \sqrt{3}-535\right) \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(-11 \,\mathrm{I}-9 \sqrt{107}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{107}-11\right) \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}}}{8112}+\frac{\mathrm{I} \sqrt{3}\, \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}}{12}-\frac{\left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}}{12}+\frac{1}{3}\right)^{-n}}{2603952}+\frac{\left(\left(\left(312 \,\mathrm{I}-312 \sqrt{3}\right) \sqrt{107}-5564 \,\mathrm{I} \sqrt{3}-5564\right) \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}+289328+\left(\left(69 \,\mathrm{I}+69 \sqrt{3}\right) \sqrt{107}+535 \,\mathrm{I} \sqrt{3}-535\right) \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(11 \,\mathrm{I}+9 \sqrt{107}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{107}-11\right) \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}}}{8112}-\frac{\mathrm{I} \sqrt{3}\, \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}}{12}-\frac{\left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}}{12}+\frac{1}{3}\right)^{-n}}{2603952}+\frac{2}{3}+\frac{\left(\left(-624 \,\mathrm{I} \sqrt{107}+11128\right) \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}-138 \,\mathrm{I} \sqrt{107}\, \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}}+1070 \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}}+289328\right) \left(\frac{\left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}+\frac{11 \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}}}{4056}-\frac{3 \,\mathrm{I} \left(44+36 \,\mathrm{I} \sqrt{107}\right)^{\frac{2}{3}} \sqrt{107}}{1352}\right)^{-n}}{2603952}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 149 rules.

Found on January 23, 2022.

Finding the specification took 11 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 149 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{15}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{15}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{44}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{15}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{114}\! \left(x \right)+F_{15}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{65}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{68}\! \left(x \right) &= x^{2}\\ F_{69}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{70}\! \left(x \right)+F_{71}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{70}\! \left(x \right) &= 0\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{77}\! \left(x \right)+F_{91}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{85}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{77}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{95}\! \left(x \right)+F_{96}\! \left(x \right)+F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{95}\! \left(x \right) &= 0\\ F_{96}\! \left(x \right) &= 0\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{15}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{112}\! \left(x \right)+F_{15}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{117}\! \left(x \right)+F_{140}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{15}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{15}\! \left(x \right)+F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{134}\! \left(x \right)+F_{15}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{130}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{132}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{126}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{138}\! \left(x \right)+F_{15}\! \left(x \right)+F_{96}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{137}\! \left(x \right) &= 0\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{117}\! \left(x \right)+F_{145}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{141}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{113}\! \left(x \right)\\ \end{align*}\)