Av(1234, 1324, 2431, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{3 x^{8}-7 x^{6}-6 x^{5}-4 x^{4}-3 x^{3}-2 x^{2}+3 x -1}{\left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 63, 177, 445, 1037, 2292, 4872, 10062, 20332, 40397, 79209, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+3 x^{8}-7 x^{6}-6 x^{5}-4 x^{4}-3 x^{3}-2 x^{2}+3 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 177\)
\(\displaystyle a \! \left(7\right) = 445\)
\(\displaystyle a \! \left(8\right) = 1037\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)+17 n +28, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}-2 & n =0 \\ \frac{\left(\left(\left(-545 \sqrt{11}+2035 \,\mathrm{I}\right) \sqrt{3}-1635 \,\mathrm{I} \sqrt{11}+2035\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+6600+\left(\left(790 \sqrt{11}+4840 \,\mathrm{I}\right) \sqrt{3}-2370 \,\mathrm{I} \sqrt{11}-4840\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{880}\\+\\\frac{\left(\left(\left(790 \sqrt{11}-4840 \,\mathrm{I}\right) \sqrt{3}+2370 \,\mathrm{I} \sqrt{11}-4840\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+6600+\left(\left(-545 \sqrt{11}-2035 \,\mathrm{I}\right) \sqrt{3}+1635 \,\mathrm{I} \sqrt{11}+2035\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{880}\\+\\\frac{\left(\left(-1580 \sqrt{11}\, \sqrt{3}+9680\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+1090 \sqrt{11}\, \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}-4070 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+6600\right) \left(\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{1}{3}+\frac{17 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}}{4}\right)^{-n}}{880}\\+\frac{\left(8448 \sqrt{5}-19360\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{880}+\\\frac{\left(-8448 \sqrt{5}-19360\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{880}+\frac{17 n}{2}+\frac{45}{2} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 224 rules.

Found on January 18, 2022.

Finding the specification took 9 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 224 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{46}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{54}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{71}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{124}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{88}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{104}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{105}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{109}\! \left(x \right)\\ F_{113}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{114}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{132}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{133}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{122}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{141}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{138}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{185}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{183}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{152}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{19}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{153}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{124}\! \left(x \right)+F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{166}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{163}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{163}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{174}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{122}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{186}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{187}\! \left(x \right)+F_{222}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{195}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{191}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{211}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{201}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{202}\! \left(x \right)\\ F_{202}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{203}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{206}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{200}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{200}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{207}\! \left(x \right)\\ F_{211}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{212}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{215}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{190}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{190}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{216}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{40}\! \left(x \right)\\ \end{align*}\)