Av(1234, 1324, 2413, 2431, 4132)
Generating Function
\(\displaystyle \frac{4 x^{12}-6 x^{11}-17 x^{10}+6 x^{9}+22 x^{8}-6 x^{7}+4 x^{6}-x^{5}-37 x^{4}+54 x^{3}-32 x^{2}+9 x -1}{\left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 135, 333, 820, 2034, 5090, 12841, 32617, 83315, 213790, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{2} F \! \left(x \right)+4 x^{12}-6 x^{11}-17 x^{10}+6 x^{9}+22 x^{8}-6 x^{7}+4 x^{6}-x^{5}-37 x^{4}+54 x^{3}-32 x^{2}+9 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 333\)
\(\displaystyle a \! \left(8\right) = 820\)
\(\displaystyle a \! \left(9\right) = 2034\)
\(\displaystyle a \! \left(10\right) = 5090\)
\(\displaystyle a \! \left(11\right) = 12841\)
\(\displaystyle a \! \left(12\right) = 32617\)
\(\displaystyle a \! \left(n +6\right) = 4 a \! \left(n \right)-12 a \! \left(n +1\right)-3 a \! \left(n +2\right)+26 a \! \left(n +3\right)-23 a \! \left(n +4\right)+8 a \! \left(n +5\right)+n -15, \quad n \geq 13\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 333\)
\(\displaystyle a \! \left(8\right) = 820\)
\(\displaystyle a \! \left(9\right) = 2034\)
\(\displaystyle a \! \left(10\right) = 5090\)
\(\displaystyle a \! \left(11\right) = 12841\)
\(\displaystyle a \! \left(12\right) = 32617\)
\(\displaystyle a \! \left(n +6\right) = 4 a \! \left(n \right)-12 a \! \left(n +1\right)-3 a \! \left(n +2\right)+26 a \! \left(n +3\right)-23 a \! \left(n +4\right)+8 a \! \left(n +5\right)+n -15, \quad n \geq 13\)
Explicit Closed Form
\(\displaystyle \left(\left\{\begin{array}{cc}\frac{95}{8} & n =0 \\ \frac{77}{8} & n =1 \\ 7 & n =2 \\ \frac{7}{2} & n =3 \\ 1 & n =4 \\ 0 & \text{otherwise} \end{array}\right.\right)+\frac{\left(-8 \sqrt{5}+40\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{80}+\frac{\left(8 \sqrt{5}+40\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{80}+\frac{\left(-24 \sqrt{5}+40\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{80}+\frac{\left(24 \sqrt{5}+40\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{80}+\frac{\left(5 n +10\right) 2^{n}}{80}+n -13\)
This specification was found using the strategy pack "Point Placements" and has 134 rules.
Found on January 18, 2022.Finding the specification took 3 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 134 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{33}\! \left(x \right) &= 0\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{42}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{46}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{33}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{67}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{130}\! \left(x \right)+F_{33}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{106}\! \left(x \right)+F_{88}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{100}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{101}\! \left(x \right)+F_{105}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{105}\! \left(x \right) &= 0\\
F_{106}\! \left(x \right) &= 0\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{128}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{114}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{67}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{116}\! \left(x \right)+F_{127}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{120}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{122}\! \left(x \right)+F_{126}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{126}\! \left(x \right) &= 0\\
F_{127}\! \left(x \right) &= 0\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{130}\! \left(x \right) &= 0\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{25}\! \left(x \right)\\
\end{align*}\)