Av(1234, 1324, 1432, 3241, 4213)
Generating Function
\(\displaystyle \frac{x^{16}+9 x^{15}+34 x^{14}+54 x^{13}+3 x^{12}-81 x^{11}-75 x^{10}-34 x^{9}-5 x^{8}+40 x^{7}+27 x^{6}-3 x^{5}-4 x^{4}-2 x^{3}+2 x -1}{\left(x -1\right) \left(x^{2}+x -1\right) \left(x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 48, 88, 152, 305, 640, 1366, 2945, 6381, 13870, 30234, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{2}+x -1\right) \left(x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1\right) F \! \left(x \right)+x^{16}+9 x^{15}+34 x^{14}+54 x^{13}+3 x^{12}-81 x^{11}-75 x^{10}-34 x^{9}-5 x^{8}+40 x^{7}+27 x^{6}-3 x^{5}-4 x^{4}-2 x^{3}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 48\)
\(\displaystyle a \! \left(6\right) = 88\)
\(\displaystyle a \! \left(7\right) = 152\)
\(\displaystyle a \! \left(8\right) = 305\)
\(\displaystyle a \! \left(9\right) = 640\)
\(\displaystyle a \! \left(10\right) = 1366\)
\(\displaystyle a \! \left(11\right) = 2945\)
\(\displaystyle a \! \left(12\right) = 6381\)
\(\displaystyle a \! \left(13\right) = 13870\)
\(\displaystyle a \! \left(14\right) = 30234\)
\(\displaystyle a \! \left(15\right) = 66045\)
\(\displaystyle a \! \left(16\right) = 144475\)
\(\displaystyle a \! \left(n +2\right) = -\frac{a \! \left(n \right)}{4}-a \! \left(n +1\right)+\frac{a \! \left(n +5\right)}{4}+\frac{a \! \left(n +6\right)}{2}-\frac{a \! \left(n +7\right)}{4}+\frac{35}{4}, \quad n \geq 17\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 48\)
\(\displaystyle a \! \left(6\right) = 88\)
\(\displaystyle a \! \left(7\right) = 152\)
\(\displaystyle a \! \left(8\right) = 305\)
\(\displaystyle a \! \left(9\right) = 640\)
\(\displaystyle a \! \left(10\right) = 1366\)
\(\displaystyle a \! \left(11\right) = 2945\)
\(\displaystyle a \! \left(12\right) = 6381\)
\(\displaystyle a \! \left(13\right) = 13870\)
\(\displaystyle a \! \left(14\right) = 30234\)
\(\displaystyle a \! \left(15\right) = 66045\)
\(\displaystyle a \! \left(16\right) = 144475\)
\(\displaystyle a \! \left(n +2\right) = -\frac{a \! \left(n \right)}{4}-a \! \left(n +1\right)+\frac{a \! \left(n +5\right)}{4}+\frac{a \! \left(n +6\right)}{2}-\frac{a \! \left(n +7\right)}{4}+\frac{35}{4}, \quad n \geq 17\)
Explicit Closed Form
\(\displaystyle \frac{112793 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{6-n}\right)}{257845}+\frac{97485 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{5-n}\right)}{51569}+\frac{113599 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{4-n}\right)}{51569}+\frac{16964 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{36835}+\frac{13808 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{36835}-\frac{33511 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{257845}-\frac{34865 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{51569}+\frac{113444 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+3 Z^{7}-4 Z^{5}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{257845}+\left(\left\{\begin{array}{cc}-6 & n =0\text{ or } n =1 \\ -7 & n =2\text{ or } n =3 \\ -3 & n =4 \\ 10 & n =5 \\ 16 & n =6 \\ 6 & n =7 \\ 1 & n =8 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 129 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 129 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{41}\! \left(x \right) &= 0\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{46}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{87}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{46}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{41}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{108}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= x^{2}\\
F_{108}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{118}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{36}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{115}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{108}\! \left(x \right)\\
F_{118}\! \left(x \right) &= 2 F_{41}\! \left(x \right)+F_{119}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{122}\! \left(x \right) &= 2 F_{41}\! \left(x \right)+F_{123}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{110}\! \left(x \right)\\
\end{align*}\)