Av(1234, 1324, 1342, 3124)
Generating Function
\(\displaystyle \frac{-x \sqrt{-4 x +1}-12 x^{2}+11 x -2}{2 \left(4 x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 69, 244, 881, 3234, 12022, 45120, 170596, 648788, 2479058, 9509628, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(4 x -1\right) \left(x -1\right)^{4} F \left(x
\right)^{2}+\left(4 x -1\right) \left(3 x -2\right) \left(x -1\right)^{2} F \! \left(x \right)+9 x^{3}-14 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +2\right) = -\frac{2 \left(2 n +3\right) a \! \left(n \right)}{n +1}+\frac{\left(4+5 n \right) a \! \left(n +1\right)}{n +1}+\frac{4}{n +1}, \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +2\right) = -\frac{2 \left(2 n +3\right) a \! \left(n \right)}{n +1}+\frac{\left(4+5 n \right) a \! \left(n +1\right)}{n +1}+\frac{4}{n +1}, \quad n \geq 3\)
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 28 rules.
Found on July 23, 2021.Finding the specification took 39 seconds.
Copy 28 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\
F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{18}\! \left(x , y\right)\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{15}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{12}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= y x\\
F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{-1+y}\\
F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x , 1\right)\\
F_{24}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{25}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)\\
F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x , y\right) &= -\frac{-y F_{24}\! \left(x , y\right)+F_{24}\! \left(x , 1\right)}{-1+y}\\
\end{align*}\)