Av(1234, 1324, 1342, 2431, 4132)
Generating Function
\(\displaystyle \frac{8 x^{10}-31 x^{9}+26 x^{8}+4 x^{7}-23 x^{6}+59 x^{5}-99 x^{4}+87 x^{3}-41 x^{2}+10 x -1}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{2} \left(2 x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 148, 387, 997, 2545, 6458, 16328, 41208, 103961, 262475, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}-3 x +1\right) \left(x -1\right)^{2} \left(2 x -1\right)^{3} F \! \left(x \right)+8 x^{10}-31 x^{9}+26 x^{8}+4 x^{7}-23 x^{6}+59 x^{5}-99 x^{4}+87 x^{3}-41 x^{2}+10 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 148\)
\(\displaystyle a \! \left(7\right) = 387\)
\(\displaystyle a \! \left(8\right) = 997\)
\(\displaystyle a \! \left(9\right) = 2545\)
\(\displaystyle a \! \left(10\right) = 6458\)
\(\displaystyle a \! \left(n +5\right) = 8 a \! \left(n \right)-36 a \! \left(n +1\right)+50 a \! \left(n +2\right)-31 a \! \left(n +3\right)+9 a \! \left(n +4\right)+n -7, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 148\)
\(\displaystyle a \! \left(7\right) = 387\)
\(\displaystyle a \! \left(8\right) = 997\)
\(\displaystyle a \! \left(9\right) = 2545\)
\(\displaystyle a \! \left(10\right) = 6458\)
\(\displaystyle a \! \left(n +5\right) = 8 a \! \left(n \right)-36 a \! \left(n +1\right)+50 a \! \left(n +2\right)-31 a \! \left(n +3\right)+9 a \! \left(n +4\right)+n -7, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left(\left\{\begin{array}{cc}\frac{41}{8} & n =0 \\ \frac{65}{16} & n =1 \\ \frac{21}{8} & n =2 \\ 1 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)+\frac{\left(-32 \sqrt{5}+160\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{320}+\frac{\left(32 \sqrt{5}+160\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{320}+\frac{\left(5 n^{2}+25 n -40\right) 2^{n}}{320}+n -5\)
This specification was found using the strategy pack "Point Placements" and has 171 rules.
Found on January 18, 2022.Finding the specification took 4 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 171 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{27}\! \left(x \right) &= 0\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{36}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{43}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{40}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{27}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{61}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{163}\! \left(x \right)+F_{27}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{76}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{118}\! \left(x \right)+F_{82}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{106}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{76}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{101}\! \left(x \right)+F_{86}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{96}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{112}\! \left(x \right)\\
F_{112}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{113}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{108}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{160}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{133}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{129}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{27}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{135}\! \left(x \right)+F_{149}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{141}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{138}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{139}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{143}\! \left(x \right)+F_{147}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{138}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{159}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{155}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{116}\! \left(x \right)+F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{155}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{166}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{152}\! \left(x \right)\\
\end{align*}\)