Av(1234, 1324, 1342, 2413, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{8}+x^{7}+x^{6}-x^{5}+5 x^{3}-9 x^{2}+5 x -1}{\left(x^{2}+x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(-1+x \right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 148, 378, 933, 2254, 5373, 12700, 29855, 69931, 163411, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(-1+x \right)^{2} F \! \left(x \right)+x^{8}+x^{7}+x^{6}-x^{5}+5 x^{3}-9 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 148\)
\(\displaystyle a \! \left(7\right) = 378\)
\(\displaystyle a \! \left(8\right) = 933\)
\(\displaystyle a \! \left(n +1\right) = a \! \left(n \right)+4 a \! \left(n +3\right)-4 a \! \left(n +4\right)+a \! \left(n +5\right)+2 n -6, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(-2208 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{167 \sqrt{23}}{1104}\right) \sqrt{3}-\frac{167 \,\mathrm{I} \sqrt{23}}{368}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+27600+4485 \left(\left(\mathrm{I}-\frac{59 \sqrt{23}}{897}\right) \sqrt{3}+\frac{59 \,\mathrm{I} \sqrt{23}}{299}-1\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{69000}\\+\\\frac{\left(-4485 \left(\left(\mathrm{I}+\frac{59 \sqrt{23}}{897}\right) \sqrt{3}+\frac{59 \,\mathrm{I} \sqrt{23}}{299}+1\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+27600+2208 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{167 \sqrt{23}}{1104}\right) \sqrt{3}-\frac{167 \,\mathrm{I} \sqrt{23}}{368}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{11 \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{69000}\\+\\\frac{\left(\left(590 \sqrt{3}\, 2^{\frac{2}{3}} \sqrt{23}+8970 \,2^{\frac{2}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+27600+\left(-668 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}+4416 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{69000}\\+\frac{\left(34500 \sqrt{5}-75900\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{69000}+\\\frac{\left(-34500 \sqrt{5}-75900\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{69000}-2 n +6 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 185 rules.

Found on January 18, 2022.

Finding the specification took 6 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 185 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{16}\! \left(x \right) &= 0\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{21}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{40}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{48}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{65}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{118}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= 3 F_{16}\! \left(x \right)+F_{82}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= 3 F_{16}\! \left(x \right)+F_{90}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{102}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{106}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{107}\! \left(x \right) &= 3 F_{16}\! \left(x \right)+F_{108}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{115}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{112}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{126}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{127}\! \left(x \right) &= 3 F_{16}\! \left(x \right)+F_{116}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{135}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{181}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{16}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{16}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{144}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{148}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{118}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{153}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{159}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= 3 F_{16}\! \left(x \right)+F_{161}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{158}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{168}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{158}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{165}\! \left(x \right)\\ F_{169}\! \left(x \right) &= 3 F_{16}\! \left(x \right)+F_{116}\! \left(x \right)+F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{177}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{174}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{178}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{182}\! \left(x \right)\\ \end{align*}\)