Av(1234, 1324, 1342, 2314, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{2 x^{6}-15 x^{5}+30 x^{4}-33 x^{3}+21 x^{2}-7 x +1}{\left(2 x -1\right) \left(-1+x \right)^{6}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 150, 369, 849, 1859, 3930, 8112, 16487, 33194, 66478, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(-1+x \right)^{6} F \! \left(x \right)+2 x^{6}-15 x^{5}+30 x^{4}-33 x^{3}+21 x^{2}-7 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 150\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)-\frac{\left(n -1\right) \left(n^{4}-14 n^{3}+11 n^{2}-34 n -120\right)}{120}, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle 4 \,2^{n}-\frac{89 n}{30}+\frac{n^{5}}{120}-\frac{n^{4}}{12}-\frac{n^{3}}{24}-\frac{11 n^{2}}{12}-3\)

This specification was found using the strategy pack "Row And Col Placements" and has 58 rules.

Found on July 23, 2021.

Finding the specification took 12 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 58 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{11}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{24}\! \left(x \right) &= 0\\ F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{11}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{11}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{11}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{38}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{11}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{11}\! \left(x \right) F_{45}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{11}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{11}\! \left(x \right) F_{50}\! \left(x \right) F_{56}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{53}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{11}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{11}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ \end{align*}\)