Av(1234, 1324, 1342, 2314, 2341)
Generating Function
\(\displaystyle \frac{-\left(x -1\right)^{2} \sqrt{-4 x +1}+5 x^{2}-4 x +1}{2 x^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 62, 207, 704, 2431, 8502, 30056, 107236, 385662, 1396652, 5088865, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{2} F \left(x
\right)^{2}+\left(-5 x^{2}+4 x -1\right) F \! \left(x \right)+x^{3}+2 x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(2+n \right) = -\frac{2 \left(-1+2 n \right) a \! \left(n \right)}{4+n}+\frac{\left(11+5 n \right) a \! \left(n +1\right)}{4+n}, \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(2+n \right) = -\frac{2 \left(-1+2 n \right) a \! \left(n \right)}{4+n}+\frac{\left(11+5 n \right) a \! \left(n +1\right)}{4+n}, \quad n \geq 3\)
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 25 rules.
Found on July 23, 2021.Finding the specification took 2 seconds.
Copy 25 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\
F_{5}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\
F_{6}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x , y\right)\\
F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= y x\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{12}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{9}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{23}\! \left(x , y\right) F_{24}\! \left(x \right)\\
F_{20}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= \frac{y F_{5}\! \left(x , y\right)-F_{5}\! \left(x , 1\right)}{-1+y}\\
F_{24}\! \left(x \right) &= x\\
\end{align*}\)