Av(1234, 1324, 1342, 1432, 3241)
View Raw Data
Generating Function
\(\displaystyle \frac{2 x^{9}+5 x^{8}+6 x^{7}+x^{6}-9 x^{5}-5 x^{4}-2 x^{3}+2 x -1}{\left(x -1\right) \left(x^{2}+x -1\right) \left(2 x^{4}+2 x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 54, 133, 312, 713, 1597, 3521, 7688, 16671, 35958, 77253, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{2}+x -1\right) \left(2 x^{4}+2 x^{3}+x^{2}+x -1\right) F \! \left(x \right)+2 x^{9}+5 x^{8}+6 x^{7}+x^{6}-9 x^{5}-5 x^{4}-2 x^{3}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 133\)
\(\displaystyle a \! \left(7\right) = 312\)
\(\displaystyle a \! \left(8\right) = 713\)
\(\displaystyle a \! \left(9\right) = 1597\)
\(\displaystyle a \! \left(n +2\right) = -2 a \! \left(n \right)-4 a \! \left(n +1\right)+a \! \left(n +4\right)+2 a \! \left(n +5\right)-a \! \left(n +6\right)+1, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \frac{12567 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{7}+2 Z^{6}-3 Z^{5}-Z^{4}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +5}\right)}{1325}+\frac{59707 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{7}+2 Z^{6}-3 Z^{5}-Z^{4}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{3975}-\frac{22072 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{7}+2 Z^{6}-3 Z^{5}-Z^{4}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{3975}-\frac{2078 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{7}+2 Z^{6}-3 Z^{5}-Z^{4}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{265}-\frac{24147 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{7}+2 Z^{6}-3 Z^{5}-Z^{4}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{2650}-\frac{81997 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{7}+2 Z^{6}-3 Z^{5}-Z^{4}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{7950}+\frac{33848 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{7}+2 Z^{6}-3 Z^{5}-Z^{4}-Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{3975}+\left(\left\{\begin{array}{cc}3 & n =0 \\ \frac{3}{2} & n =1 \\ 1 & n =2 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 343 rules.

Found on January 18, 2022.

Finding the specification took 18 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 343 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{45}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{53}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{70}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{123}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{87}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{102}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{103}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{104}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{112}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{113}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{117}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{132}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{121}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{140}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{137}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{183}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{152}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{19}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{153}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{123}\! \left(x \right)+F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{166}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{163}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{163}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{174}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{121}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{19}\! \left(x \right)+F_{287}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{190}\! \left(x \right)+F_{195}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= x^{2}\\ F_{195}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{216}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{206}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{209}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{201}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{213}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{201}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{210}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{197}\! \left(x \right)\\ F_{216}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{217}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{223}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{222}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{193}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{258}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{226}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{227}\! \left(x \right)+F_{231}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{230}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{193}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{233}\! \left(x \right)+F_{241}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{236}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{228}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{238}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{240}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{228}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{248}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{229}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{249}\! \left(x \right)\\ F_{249}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{241}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{247}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{255}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)+F_{257}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{247}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{254}\! \left(x \right)\\ F_{258}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{259}\! \left(x \right)+F_{267}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{220}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{264}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)+F_{266}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{220}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{263}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{243}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{272}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{274}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)+F_{277}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{276}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{267}\! \left(x \right)+F_{279}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{280}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)+F_{282}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{276}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{286}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{276}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{290}\! \left(x \right)+F_{342}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{291}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{296}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{293}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{190}\! \left(x \right)+F_{294}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{295}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{312}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{299}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)+F_{302}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{301}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{202}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{303}\! \left(x \right)\\ F_{303}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{214}\! \left(x \right)+F_{304}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{306}\! \left(x \right)+F_{307}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{301}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{308}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{309}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{310}\! \left(x \right)+F_{311}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{301}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{308}\! \left(x \right)\\ F_{312}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{269}\! \left(x \right)+F_{313}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{317}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{316}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{333}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{320}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)+F_{323}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{322}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{229}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{241}\! \left(x \right)+F_{325}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{326}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{328}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{322}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{330}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)+F_{332}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{322}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{329}\! \left(x \right)\\ F_{333}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{267}\! \left(x \right)+F_{334}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{335}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)+F_{337}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{316}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{339}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)+F_{341}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{316}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{338}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{184}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)