Av(1234, 1324, 1342, 1423, 2413)
Generating Function
\(\displaystyle -\frac{x^{2}-3 x +1}{x^{3}-3 x^{2}+4 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 60, 189, 595, 1873, 5896, 18560, 58425, 183916, 578949, 1822473, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-3 x^{2}+4 x -1\right) F \! \left(x \right)+x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 3\)
Explicit Closed Form
\(\displaystyle \frac{\left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{31}+\frac{12 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{31}-\frac{2 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{31}\)
This specification was found using the strategy pack "Point Placements" and has 47 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 47 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{16}\! \left(x \right) &= 0\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{32}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{29}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{31}\! \left(x \right)\\
\end{align*}\)