Av(1234, 1324, 1342, 1423, 2314)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(-2 x^{2}+2 x -1+\sqrt{-4 x +1}\right) \left(x -1\right)}{2 x^{2} \left(x^{2}-2 x +2\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 61, 200, 670, 2286, 7918, 27770, 98424, 351983, 1268541, 4602752, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{2} \left(x^{2}-2 x +2\right) F \left(x \right)^{2}+\left(x -1\right) \left(2 x^{2}-2 x +1\right) F \! \left(x \right)+\left(x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{\left(5+2 n \right) a \! \left(n \right)}{6+n}-\frac{\left(70+19 n \right) a \! \left(2+n \right)}{2 \left(6+n \right)}+\frac{\left(42+13 n \right) a \! \left(n +1\right)}{12+2 n}+\frac{2 \left(14+3 n \right) a \! \left(n +3\right)}{6+n}, \quad n \geq 4\)

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 20 rules.

Found on July 23, 2021.

Finding the specification took 21 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 20 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{16}\! \left(x \right) F_{17}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{10}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= y x\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{15}\! \left(x , y\right) &= \frac{y F_{8}\! \left(x , y\right)-F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{16}\! \left(x \right) &= x\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{16}\! \left(x \right) F_{17}\! \left(x \right)\\ \end{align*}\)