Av(1234, 1243, 3412)
View Raw Data
Generating Function
12x736x6+78x598x4+75x335x2+9x1(2x1)2(x1)6
Counting Sequence
1, 1, 2, 6, 21, 73, 238, 718, 2013, 5301, 13266, 31886, 74269, 168841, 376750, ...
Implicit Equation for the Generating Function
(2x1)2(x1)6F(x)+12x736x6+78x598x4+75x335x2+9x1=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=6
a(4)=21
a(5)=73
a(6)=238
a(7)=718
a(n+2)=n530+5n4124n33+37n2124a(n)+4a(n+1)32n15+2,n8
Explicit Closed Form
5+2n+1n42n2n33+5n212+n5+n412n530

This specification was found using the strategy pack "Insertion Point Placements" and has 142 rules.

Found on January 17, 2022.

Finding the specification took 33 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 142 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F22(x)+F6(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F9(x)F9(x)=F10(x)+F11(x)F10(x)=F1(x)+F4(x)F11(x)=F12(x)+F7(x)F12(x)=F13(x)+F14(x)+F18(x)F13(x)=0F14(x)=F15(x)F4(x)F15(x)=F16(x)+F17(x)F16(x)=F4(x)F17(x)=F12(x)F18(x)=F19(x)F4(x)F19(x)=F20(x)F20(x)=F21(x)F4(x)F21(x)=F1(x)+F20(x)F22(x)=F2(x)+F23(x)F23(x)=F24(x)F24(x)=F25(x)F4(x)F25(x)=F103(x)+F26(x)F26(x)=F27(x)+F28(x)F27(x)=F23(x)+F7(x)F28(x)=F29(x)+F55(x)F29(x)=F30(x)+F7(x)F30(x)=F13(x)+F31(x)+F37(x)F31(x)=F32(x)F4(x)F32(x)=F33(x)+F34(x)F33(x)=F4(x)F34(x)=F35(x)F35(x)=F13(x)+F31(x)+F36(x)F36(x)=F19(x)F4(x)F37(x)=F38(x)F4(x)F38(x)=F39(x)+F43(x)F39(x)=F19(x)+F40(x)F40(x)=F13(x)+F36(x)+F41(x)F41(x)=F4(x)F42(x)F42(x)=F4(x)+F40(x)F43(x)=F44(x)+F45(x)F44(x)=F13(x)+F37(x)+F41(x)F45(x)=F13(x)+F46(x)+F47(x)+F51(x)F46(x)=0F47(x)=F4(x)F48(x)F48(x)=F49(x)+F50(x)F49(x)=F40(x)F50(x)=F45(x)F51(x)=F4(x)F52(x)F52(x)=F53(x)F53(x)=F4(x)F54(x)F54(x)=F19(x)+F52(x)F55(x)=F56(x)+F57(x)F56(x)=F19(x)F7(x)F57(x)=F58(x)F58(x)=F4(x)F59(x)F59(x)=F60(x)+F70(x)F60(x)=F61(x)F61(x)=F19(x)F21(x)F62(x)F62(x)=F63(x)+F68(x)F63(x)=F19(x)+F64(x)F64(x)=F13(x)+F65(x)+F67(x)F65(x)=F4(x)F66(x)F66(x)=F19(x)+F64(x)F67(x)=F4(x)F63(x)F68(x)=F19(x)F69(x)F69(x)=F21(x)+F63(x)F70(x)=F19(x)F71(x)F71(x)=F60(x)+F72(x)F72(x)=F73(x)+F98(x)F73(x)=F74(x)+F96(x)F74(x)=F19(x)+F75(x)F75(x)=F13(x)+F76(x)+F78(x)F76(x)=F4(x)F77(x)F77(x)=F7(x)+F75(x)F78(x)=F4(x)F79(x)F79(x)=F80(x)+F84(x)F80(x)=F19(x)+F81(x)F81(x)=F13(x)+F18(x)+F82(x)F82(x)=F4(x)F83(x)F83(x)=F4(x)+F81(x)F84(x)=F75(x)+F85(x)F85(x)=F13(x)+F86(x)+F88(x)+F92(x)F86(x)=F4(x)F87(x)F87(x)=F12(x)+F85(x)F88(x)=F4(x)F89(x)F89(x)=F90(x)+F91(x)F90(x)=F81(x)F91(x)=F85(x)F92(x)=F4(x)F93(x)F93(x)=F94(x)F94(x)=F4(x)F95(x)F95(x)=F19(x)+F93(x)F96(x)=F97(x)F97(x)=F19(x)2F21(x)F98(x)=F101(x)+F99(x)F99(x)=F100(x)F19(x)F100(x)=F6(x)+F74(x)F101(x)=F102(x)F102(x)=F21(x)2F64(x)F103(x)=F104(x)+F132(x)F104(x)=F105(x)+F106(x)F105(x)=F19(x)F4(x)F106(x)=F107(x)F107(x)=F108(x)F4(x)F108(x)=F109(x)+F117(x)F109(x)=F110(x)+F111(x)F110(x)=F104(x)F111(x)=F112(x)F4(x)F112(x)=F113(x)+F19(x)F113(x)=F114(x)+F116(x)+F13(x)F114(x)=F115(x)F4(x)F115(x)=F113(x)+F19(x)F116(x)=F112(x)F4(x)F117(x)=F118(x)F19(x)F118(x)=F119(x)+F123(x)F119(x)=F120(x)+F20(x)F120(x)=F121(x)+F122(x)F121(x)=F12(x)+F4(x)F122(x)=F81(x)+F85(x)F123(x)=F111(x)+F124(x)F124(x)=F125(x)F125(x)=F126(x)F4(x)F126(x)=F112(x)+F127(x)F127(x)=F113(x)+F128(x)F128(x)=2F13(x)+F129(x)+F131(x)F129(x)=F130(x)F4(x)F130(x)=F128(x)+F52(x)F131(x)=F127(x)F4(x)F132(x)=F133(x)+F135(x)F133(x)=F134(x)F19(x)F134(x)=F35(x)+F7(x)F135(x)=F136(x)+F137(x)F136(x)=F113(x)F7(x)F137(x)=F138(x)F138(x)=F139(x)F140(x)F4(x)F139(x)=F113(x)+F127(x)F140(x)=F141(x)+F19(x)F141(x)=F19(x)F21(x)