Av(1234, 1243, 3241)
View Raw Data
Generating Function
2x11+x1010x99x8+12x7+17x630x5+2x4+28x324x2+8x1(2x1)(x2+2x1)(x2+x1)2(x1)3
Counting Sequence
1, 1, 2, 6, 21, 73, 238, 724, 2078, 5706, 15161, 39319, 100168, 251846, 627046, ...
Implicit Equation for the Generating Function
(2x1)(x2+2x1)(x2+x1)2(x1)3F(x)+2x11+x1010x99x8+12x7+17x630x5+2x4+28x324x2+8x1=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=6
a(4)=21
a(5)=73
a(6)=238
a(7)=724
a(8)=2078
a(9)=5706
a(10)=15161
a(11)=39319
a(n+1)=2n27+2a(n+3)2a(n+4)710a(n+5)7+6a(n+6)7a(n+7)72a(n)78n72,n12
Explicit Closed Form
{2n=0((8n+6)520n10)(5212)n20+((8n6)520n10)(5212)n20+(152+40)(12)n20+(152+40)(21)n20+n2+2n32n+1otherwise

This specification was found using the strategy pack "Point Placements" and has 156 rules.

Found on January 18, 2022.

Finding the specification took 19 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 156 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F20(x)+F6(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F9(x)F9(x)=F10(x)+F11(x)F10(x)=F1(x)+F4(x)F11(x)=F12(x)+F7(x)F12(x)=F13(x)+F14(x)+F19(x)F13(x)=0F14(x)=F15(x)F4(x)F15(x)=F16(x)+F17(x)F16(x)=F4(x)F17(x)=F18(x)F18(x)=F14(x)F19(x)=F4(x)F7(x)F20(x)=F2(x)+F21(x)F21(x)=F111(x)+F13(x)+F22(x)F22(x)=F23(x)F4(x)F23(x)=F24(x)+F36(x)F24(x)=F25(x)+F7(x)F25(x)=F13(x)+F14(x)+F26(x)F26(x)=F27(x)F4(x)F27(x)=F11(x)+F28(x)F28(x)=F25(x)+F29(x)F29(x)=F13(x)+F30(x)+F31(x)+F35(x)F30(x)=0F31(x)=F32(x)F4(x)F32(x)=F17(x)+F33(x)F33(x)=F34(x)F34(x)=F31(x)F35(x)=F25(x)F4(x)F36(x)=F37(x)+F91(x)F37(x)=F38(x)F38(x)=F39(x)F4(x)F39(x)=F40(x)+F42(x)F40(x)=F41(x)+F7(x)F41(x)=F14(x)F42(x)=F37(x)+F43(x)F43(x)=2F13(x)+F44(x)+F63(x)F44(x)=F4(x)F45(x)F45(x)=F46(x)+F48(x)F46(x)=F41(x)+F47(x)F47(x)=F31(x)F48(x)=F49(x)+F54(x)F49(x)=F50(x)F50(x)=F4(x)F51(x)F51(x)=F52(x)+F53(x)F52(x)=F41(x)F53(x)=F49(x)F54(x)=F55(x)F55(x)=F4(x)F56(x)F56(x)=F57(x)+F58(x)F57(x)=F47(x)F58(x)=F59(x)F59(x)=F4(x)F60(x)F60(x)=F61(x)+F62(x)F61(x)=F47(x)F62(x)=F59(x)F63(x)=F4(x)F64(x)F64(x)=F65(x)+F90(x)F65(x)=F66(x)F66(x)=F67(x)F67(x)=F4(x)F68(x)F68(x)=F69(x)+F70(x)F69(x)=F18(x)+F4(x)F70(x)=F66(x)+F71(x)F71(x)=2F13(x)+F63(x)+F72(x)F72(x)=F4(x)F73(x)F73(x)=F74(x)+F75(x)F74(x)=F18(x)+F34(x)F75(x)=F76(x)+F81(x)F76(x)=F77(x)F77(x)=F4(x)F78(x)F78(x)=F79(x)+F80(x)F79(x)=F18(x)F80(x)=F76(x)F81(x)=F82(x)F82(x)=F4(x)F83(x)F83(x)=F84(x)+F85(x)F84(x)=F34(x)F85(x)=F86(x)F86(x)=F4(x)F87(x)F87(x)=F88(x)+F89(x)F88(x)=F34(x)F89(x)=F86(x)F90(x)=F71(x)F91(x)=2F13(x)+F63(x)+F92(x)F92(x)=F4(x)F93(x)F93(x)=F94(x)+F96(x)F94(x)=F25(x)+F95(x)F95(x)=F31(x)F96(x)=F102(x)+F97(x)F97(x)=F98(x)F98(x)=F4(x)F99(x)F99(x)=F100(x)+F101(x)F100(x)=F25(x)F101(x)=F97(x)F102(x)=F103(x)F103(x)=F104(x)F4(x)F104(x)=F105(x)+F106(x)F105(x)=F95(x)F106(x)=F107(x)F107(x)=F108(x)F4(x)F108(x)=F109(x)+F110(x)F109(x)=F95(x)F110(x)=F107(x)F111(x)=F112(x)F4(x)F112(x)=F113(x)+F140(x)F113(x)=F114(x)+F2(x)F114(x)=F115(x)+F13(x)+F139(x)F115(x)=F116(x)F4(x)F116(x)=F117(x)+F118(x)F117(x)=F12(x)+F4(x)F118(x)=F119(x)+F66(x)F119(x)=2F13(x)+F120(x)+F63(x)F120(x)=F121(x)F4(x)F121(x)=F122(x)+F124(x)F122(x)=F12(x)+F123(x)F123(x)=F31(x)F124(x)=F125(x)+F130(x)F125(x)=F126(x)F126(x)=F127(x)F4(x)F127(x)=F128(x)+F129(x)F128(x)=F12(x)F129(x)=F125(x)F130(x)=F131(x)F131(x)=F132(x)F4(x)F132(x)=F133(x)+F134(x)F133(x)=F123(x)F134(x)=F135(x)F135(x)=F136(x)F4(x)F136(x)=F137(x)+F138(x)F137(x)=F123(x)F138(x)=F135(x)F139(x)=F2(x)F4(x)F140(x)=F141(x)+F21(x)F141(x)=F13(x)+F142(x)+F155(x)+F63(x)F142(x)=F143(x)F4(x)F143(x)=F144(x)+F145(x)F144(x)=F12(x)+F29(x)F145(x)=F125(x)+F146(x)F146(x)=F147(x)F147(x)=F148(x)F4(x)F148(x)=F149(x)+F150(x)F149(x)=F29(x)F150(x)=F151(x)F151(x)=F152(x)F4(x)F152(x)=F153(x)+F154(x)F153(x)=F29(x)F154(x)=F151(x)F155(x)=F21(x)F4(x)