Av(1234, 1243, 2431, 4213)
View Raw Data
Generating Function
\(\displaystyle -\frac{3 x^{14}+8 x^{13}-2 x^{12}-22 x^{11}-17 x^{10}+20 x^{9}+37 x^{8}-2 x^{7}-20 x^{6}-5 x^{5}-x^{4}+4 x^{3}+4 x^{2}-4 x +1}{\left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2} \left(x^{2}+x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 59, 140, 299, 617, 1244, 2468, 4838, 9397, 18119, 34728, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{2} \left(x^{2}+x -1\right)^{2} F \! \left(x \right)+3 x^{14}+8 x^{13}-2 x^{12}-22 x^{11}-17 x^{10}+20 x^{9}+37 x^{8}-2 x^{7}-20 x^{6}-5 x^{5}-x^{4}+4 x^{3}+4 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 140\)
\(\displaystyle a \! \left(7\right) = 299\)
\(\displaystyle a \! \left(8\right) = 617\)
\(\displaystyle a \! \left(9\right) = 1244\)
\(\displaystyle a \! \left(10\right) = 2468\)
\(\displaystyle a \! \left(11\right) = 4838\)
\(\displaystyle a \! \left(12\right) = 9397\)
\(\displaystyle a \! \left(13\right) = 18119\)
\(\displaystyle a \! \left(14\right) = 34728\)
\(\displaystyle a \! \left(n +4\right) = \frac{a \! \left(n \right)}{4}+\frac{3 a \! \left(n +1\right)}{4}+\frac{a \! \left(n +2\right)}{2}-\frac{a \! \left(n +3\right)}{2}+\frac{3 a \! \left(n +6\right)}{4}-\frac{a \! \left(n +7\right)}{4}+n -\frac{7}{4}, \quad n \geq 15\)
Explicit Closed Form
\(\displaystyle \frac{37 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}+Z^{2}+Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{22}+\frac{36 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}+Z^{2}+Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{11}+\frac{29 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}+Z^{2}+Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{11}+\frac{\left(880 n +880\right) \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -2}\right)}{550}+\frac{\left(-990 n -7381\right) \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{550}+\frac{367 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{50}+\frac{\left(-990 n +2189\right) \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{550}-\left(\left\{\begin{array}{cc}-2 & n =1 \\ 2 & n =3 \\ 5 & n =4 \\ 3 & n =5 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 72 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 72 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{37}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{35}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{67}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{68}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ \end{align*}\)