Av(1234, 1243, 2431, 4132)
View Raw Data
Generating Function
\(\displaystyle \frac{4 x^{13}-20 x^{12}+16 x^{11}+65 x^{10}-154 x^{9}+128 x^{8}+4 x^{7}-141 x^{6}+225 x^{5}-220 x^{4}+137 x^{3}-52 x^{2}+11 x -1}{\left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 167, 419, 1021, 2467, 5979, 14618, 36124, 90209, 227356, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{5} F \! \left(x \right)+4 x^{13}-20 x^{12}+16 x^{11}+65 x^{10}-154 x^{9}+128 x^{8}+4 x^{7}-141 x^{6}+225 x^{5}-220 x^{4}+137 x^{3}-52 x^{2}+11 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(7\right) = 419\)
\(\displaystyle a \! \left(8\right) = 1021\)
\(\displaystyle a \! \left(9\right) = 2467\)
\(\displaystyle a \! \left(10\right) = 5979\)
\(\displaystyle a \! \left(11\right) = 14618\)
\(\displaystyle a \! \left(12\right) = 36124\)
\(\displaystyle a \! \left(13\right) = 90209\)
\(\displaystyle a \! \left(n +4\right) = -\frac{n^{4}}{12}+\frac{4 n^{3}}{3}-\frac{65 n^{2}}{12}+16 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right)-4 a \! \left(n \right)+\frac{37 n}{6}+9, \quad n \geq 14\)
Explicit Closed Form
\(\displaystyle \frac{n^{4}}{12}-n^{3}+\frac{2^{n} n}{16}+\frac{59 n^{2}}{12}+\frac{15 \,2^{n}}{16}+\left(\left\{\begin{array}{cc}-\frac{63}{16} & n =0 \\ 4 & n =1 \\ \frac{23}{4} & n =2 \\ 4 & n =3 \\ 1 & n =4 \\ 0 & \text{otherwise} \end{array}\right.\right)-13 n +3+\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{10}-\frac{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{10}+\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{2}+\frac{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{2}\)

This specification was found using the strategy pack "Point Placements" and has 158 rules.

Found on January 18, 2022.

Finding the specification took 5 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 158 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{13}\! \left(x \right) &= 0\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{28}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{35}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{42}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{39}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{151}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{32}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{32}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{13}\! \left(x \right)+F_{135}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{82}\! \left(x \right)+F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{86}\! \left(x \right) &= 0\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{94}\! \left(x \right) &= 3 F_{13}\! \left(x \right)+F_{95}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{13}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{106}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{108}\! \left(x \right)+F_{116}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{113}\! \left(x \right)+F_{86}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{112}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{122}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{121}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{125}\! \left(x \right)+F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{116}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{143}\! \left(x \right)+F_{146}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{142}\! \left(x \right)\\ F_{146}\! \left(x \right) &= 0\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{149}\! \left(x \right) &= 3 F_{13}\! \left(x \right)+F_{150}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{148}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{154}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{156}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{156}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{139}\! \left(x \right)+F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{155}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)