Av(1234, 1243, 2314, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{-\left(x -1\right)^{2} \sqrt{-4 x +1}-x^{2}-2 x +1}{4 x^{3}-6 x^{2}+2 x}\)
Counting Sequence
1, 1, 2, 6, 20, 67, 223, 742, 2484, 8399, 28731, 99451, 348127, 1231141, 4393821, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(2 x -1\right)^{2} \left(x -1\right)^{2} F \left(x \right)^{2}+\left(2 x -1\right) \left(x -1\right) \left(x^{2}+2 x -1\right) F \! \left(x \right)+x^{4}-4 x^{3}+8 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = \frac{4 \left(1+2 n \right) a \! \left(n \right)}{4+n}-\frac{2 \left(13+7 n \right) a \! \left(1+n \right)}{4+n}+\frac{\left(20+7 n \right) a \! \left(n +2\right)}{4+n}+\frac{6}{4+n}, \quad n \geq 4\)

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 132 rules.

Found on July 23, 2021.

Finding the specification took 3 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 132 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{12}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{33}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{41}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{51}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{61}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{12}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{12}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{66}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{67}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{12}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{77}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{12}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{12}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{12}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x , 1\right)\\ F_{87}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{129}\! \left(x , y\right)+F_{131}\! \left(x , y\right)+F_{88}\! \left(x , y\right)\\ F_{88}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{89}\! \left(x , y\right)\\ F_{89}\! \left(x , y\right) &= F_{106}\! \left(x , y\right)+F_{90}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= F_{91}\! \left(x , y\right)+F_{99}\! \left(x , y\right)\\ F_{91}\! \left(x , y\right) &= F_{92}\! \left(x , y\right)+F_{96}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{93}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{94}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{92}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ F_{95}\! \left(x , y\right) &= y x\\ F_{96}\! \left(x , y\right) &= F_{8}\! \left(x \right)+F_{97}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{95}\! \left(x , y\right) F_{96}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= F_{100}\! \left(x , y\right)+F_{103}\! \left(x , y\right)\\ F_{100}\! \left(x , y\right) &= F_{101}\! \left(x , y\right)+F_{22}\! \left(x \right)\\ F_{101}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)\\ F_{102}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{25}\! \left(x \right)\\ F_{104}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)\\ F_{105}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ F_{106}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{118}\! \left(x , y\right)\\ F_{107}\! \left(x , y\right) &= F_{108}\! \left(x , y\right)+F_{113}\! \left(x , y\right)\\ F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right)+F_{22}\! \left(x \right)\\ F_{109}\! \left(x , y\right) &= F_{110}\! \left(x , y\right)+F_{112}\! \left(x , y\right)+F_{15}\! \left(x \right)\\ F_{110}\! \left(x , y\right) &= F_{111}\! \left(x , y\right) F_{12}\! \left(x \right)\\ F_{111}\! \left(x , y\right) &= F_{109}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{112}\! \left(x , y\right) &= F_{108}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)+F_{40}\! \left(x \right)\\ F_{114}\! \left(x , y\right) &= 2 F_{15}\! \left(x \right)+F_{115}\! \left(x , y\right)+F_{117}\! \left(x , y\right)\\ F_{115}\! \left(x , y\right) &= F_{116}\! \left(x , y\right) F_{12}\! \left(x \right)\\ F_{116}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\ F_{117}\! \left(x , y\right) &= F_{113}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ F_{118}\! \left(x , y\right) &= F_{119}\! \left(x , y\right)+F_{124}\! \left(x , y\right)\\ F_{119}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)+F_{60}\! \left(x \right)\\ F_{120}\! \left(x , y\right) &= 2 F_{15}\! \left(x \right)+F_{121}\! \left(x , y\right)+F_{123}\! \left(x , y\right)\\ F_{121}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{122}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{101}\! \left(x , y\right)+F_{120}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{119}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ F_{124}\! \left(x , y\right) &= F_{125}\! \left(x , y\right)+F_{66}\! \left(x \right)\\ F_{125}\! \left(x , y\right) &= 3 F_{15}\! \left(x \right)+F_{126}\! \left(x , y\right)+F_{128}\! \left(x , y\right)\\ F_{126}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{127}\! \left(x , y\right)\\ F_{127}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{125}\! \left(x , y\right)\\ F_{128}\! \left(x , y\right) &= F_{124}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ F_{129}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{130}\! \left(x , y\right)\\ F_{130}\! \left(x , y\right) &= \frac{F_{87}\! \left(x , y\right) y -F_{87}\! \left(x , 1\right)}{-1+y}\\ F_{131}\! \left(x , y\right) &= F_{87}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\ \end{align*}\)