Av(1234, 1243, 2314, 3412)
Generating Function
\(\displaystyle -\frac{4 x^{6}-16 x^{5}+31 x^{4}-33 x^{3}+21 x^{2}-7 x +1}{\left(2 x -1\right) \left(x -1\right)^{6}}\)
Counting Sequence
1, 1, 2, 6, 20, 63, 181, 478, 1179, 2757, 6188, 13462, 28606, 59731, 123127, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x -1\right)^{6} F \! \left(x \right)+4 x^{6}-16 x^{5}+31 x^{4}-33 x^{3}+21 x^{2}-7 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 181\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n^{4}+n^{3}+36 n^{2}-24 n +120\right)}{120}, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 181\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n^{4}+n^{3}+36 n^{2}-24 n +120\right)}{120}, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle -7+8 \,2^{n}-\frac{119 n}{20}-\frac{13 n^{3}}{24}-\frac{35 n^{2}}{24}-\frac{n^{4}}{24}-\frac{n^{5}}{120}\)
This specification was found using the strategy pack "Point And Row Placements" and has 79 rules.
Found on July 23, 2021.Finding the specification took 11 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 79 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{14}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{17}\! \left(x \right) &= 0\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{14}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{14}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{14}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{35}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{14}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{14}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{14}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{14}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{55}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{14}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{14}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{60}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{61}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{14}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{14}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{14}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{23}\! \left(x \right) F_{71}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{14}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{14}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{23}\! \left(x \right) F_{25}\! \left(x \right)\\
\end{align*}\)