Av(1234, 1243, 2314, 3241)
Generating Function
\(\displaystyle \frac{x^{10}+2 x^{9}-2 x^{8}-4 x^{7}+5 x^{6}+7 x^{5}-11 x^{4}-4 x^{3}+12 x^{2}-6 x +1}{\left(x^{2}+2 x -1\right) \left(x^{2}+x -1\right)^{2} \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 20, 63, 187, 526, 1420, 3719, 9527, 24015, 59827, 147767, 362685, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+2 x -1\right) \left(x^{2}+x -1\right)^{2} \left(x -1\right)^{3} F \! \left(x \right)+x^{10}+2 x^{9}-2 x^{8}-4 x^{7}+5 x^{6}+7 x^{5}-11 x^{4}-4 x^{3}+12 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 187\)
\(\displaystyle a \! \left(7\right) = 526\)
\(\displaystyle a \! \left(8\right) = 1420\)
\(\displaystyle a \! \left(9\right) = 3719\)
\(\displaystyle a \! \left(10\right) = 9527\)
\(\displaystyle a \! \left(n +6\right) = \frac{n^{2}}{2}+2 a \! \left(n +2\right)-6 a \! \left(n +3\right)-2 a \! \left(n +4\right)+4 a \! \left(n +5\right)+a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{7 n}{2}+7, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 187\)
\(\displaystyle a \! \left(7\right) = 526\)
\(\displaystyle a \! \left(8\right) = 1420\)
\(\displaystyle a \! \left(9\right) = 3719\)
\(\displaystyle a \! \left(10\right) = 9527\)
\(\displaystyle a \! \left(n +6\right) = \frac{n^{2}}{2}+2 a \! \left(n +2\right)-6 a \! \left(n +3\right)-2 a \! \left(n +4\right)+4 a \! \left(n +5\right)+a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{7 n}{2}+7, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(\left(60 n -28\right) \sqrt{5}-140 n +100\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{200}+\\\frac{\left(\left(-60 n +28\right) \sqrt{5}-140 n +100\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{200}+\\\frac{\left(-75 \sqrt{2}+225\right) \left(-1-\sqrt{2}\right)^{-n}}{200}+\frac{\left(75 \sqrt{2}+225\right) \left(\sqrt{2}-1\right)^{-n}}{200}-\frac{n^{2}}{4}+\frac{3 n}{4}\\-\frac{13}{4} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 65 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
Copy 65 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{13}\! \left(x \right) &= 0\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{21}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)