Av(1234, 1243, 2314, 3142, 3241)
Generating Function
\(\displaystyle \frac{x^{8}-2 x^{6}+5 x^{4}+x^{3}-8 x^{2}+5 x -1}{\left(x^{2}+x -1\right) \left(x^{2}+2 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 150, 392, 996, 2485, 6128, 14999, 36536, 88723, 215021, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+x -1\right) \left(x^{2}+2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{8}-2 x^{6}+5 x^{4}+x^{3}-8 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 150\)
\(\displaystyle a \! \left(7\right) = 392\)
\(\displaystyle a \! \left(8\right) = 996\)
\(\displaystyle a \! \left(n +1\right) = -\frac{n^{2}}{6}-\frac{a \! \left(n \right)}{3}+a \! \left(n +3\right)-\frac{a \! \left(n +4\right)}{3}+\frac{5 n}{6}+\frac{2}{3}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 150\)
\(\displaystyle a \! \left(7\right) = 392\)
\(\displaystyle a \! \left(8\right) = 996\)
\(\displaystyle a \! \left(n +1\right) = -\frac{n^{2}}{6}-\frac{a \! \left(n \right)}{3}+a \! \left(n +3\right)-\frac{a \! \left(n +4\right)}{3}+\frac{5 n}{6}+\frac{2}{3}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}2 & n =0 \\ \frac{\left(16 \sqrt{5}-40\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{40}+\frac{\left(-16 \sqrt{5}-40\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{40}+\\\frac{\left(5 \sqrt{2}+45\right) \left(-1-\sqrt{2}\right)^{-n}}{40}+\frac{\left(-5 \sqrt{2}+45\right) \left(\sqrt{2}-1\right)^{-n}}{40}-\frac{n^{2}}{4}+\frac{3 n}{4}+\frac{3}{4} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 40 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 40 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{13}\! \left(x \right) &= 0\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{21}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)