Av(1234, 1243, 2314, 3124, 3412)
Generating Function
\(\displaystyle -\frac{4 x^{6}-15 x^{5}+30 x^{4}-33 x^{3}+21 x^{2}-7 x +1}{\left(2 x -1\right) \left(-1+x \right)^{6}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 152, 385, 923, 2119, 4702, 10160, 21507, 44818, 92300, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(-1+x \right)^{6} F \! \left(x \right)+4 x^{6}-15 x^{5}+30 x^{4}-33 x^{3}+21 x^{2}-7 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 152\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n^{4}-4 n^{3}+41 n^{2}-14 n +120\right)}{120}, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 152\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n^{4}-4 n^{3}+41 n^{2}-14 n +120\right)}{120}, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle -5+6 \,2^{n}-\frac{11 n^{3}}{24}-n^{2}-\frac{68 n}{15}-\frac{n^{5}}{120}\)
This specification was found using the strategy pack "Point Placements" and has 38 rules.
Found on July 23, 2021.Finding the specification took 7 seconds.
Copy 38 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{13}\! \left(x \right) &= 0\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{28}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{33}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{34}\! \left(x \right)\\
\end{align*}\)