Av(1234, 1243, 2314, 3124)
Generating Function
\(\displaystyle \frac{x^{2}-x +1-\sqrt{x^{4}-2 x^{3}+7 x^{2}-6 x +1}}{2 x}\)
Counting Sequence
1, 1, 2, 6, 20, 70, 254, 948, 3618, 14058, 55432, 221262, 892346, 3630680, 14885042, ...
Implicit Equation for the Generating Function
\(\displaystyle -x F \left(x
\right)^{2}+\left(x^{2}-x +1\right) F \! \left(x \right)+x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{\left(n -1\right) a \! \left(n \right)}{5+n}+\frac{\left(1+2 n \right) a \! \left(1+n \right)}{5+n}-\frac{7 \left(n +2\right) a \! \left(n +2\right)}{5+n}+\frac{3 \left(2 n +7\right) a \! \left(n +3\right)}{5+n}, \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{\left(n -1\right) a \! \left(n \right)}{5+n}+\frac{\left(1+2 n \right) a \! \left(1+n \right)}{5+n}-\frac{7 \left(n +2\right) a \! \left(n +2\right)}{5+n}+\frac{3 \left(2 n +7\right) a \! \left(n +3\right)}{5+n}, \quad n \geq 4\)
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 20 rules.
Found on July 23, 2021.Finding the specification took 10 seconds.
Copy 20 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{16}\! \left(x \right) F_{19}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\
F_{8}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{10}\! \left(x , y\right)\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= y x\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{16}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{15}\! \left(x , y\right) &= \frac{y F_{8}\! \left(x , y\right)-F_{8}\! \left(x , 1\right)}{-1+y}\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{16}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= x\\
\end{align*}\)