Av(1234, 1243, 2314, 2431, 3124)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{6}-2 x^{5}+4 x^{4}-6 x^{3}+9 x^{2}-5 x +1}{\left(2 x -1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 161, 432, 1114, 2788, 6821, 16399, 38891, 91234, 212152, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{2} F \! \left(x \right)-x^{6}+2 x^{5}-4 x^{4}+6 x^{3}-9 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 161\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+a \! \left(n +1\right)-4 a \! \left(n +2\right)+4 a \! \left(n +3\right)+2 n +3, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle 2-\frac{2620 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{59}+\frac{53 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{59}-\frac{5215 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{59}+\frac{2730 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{59}+n +\left(\left\{\begin{array}{cc}\frac{1}{2} & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 52 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 52 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{13}\! \left(x \right) &= 0\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{21}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{31}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{44}\! \left(x \right)\\ \end{align*}\)