Av(1234, 1243, 2143, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{5}-9 x^{4}+11 x^{3}-11 x^{2}+5 x -1}{\left(x -1\right)^{6}}\)
Counting Sequence
1, 1, 2, 6, 20, 60, 155, 351, 715, 1339, 2344, 3884, 6150, 9374, 13833, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{6} F \! \left(x \right)+x^{5}-9 x^{4}+11 x^{3}-11 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(n \right) = 1-\frac{17}{60} n +\frac{1}{8} n^{2}-\frac{1}{8} n^{4}+\frac{1}{4} n^{3}+\frac{1}{30} n^{5}, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle 1-\frac{17}{60} n +\frac{1}{8} n^{2}-\frac{1}{8} n^{4}+\frac{1}{4} n^{3}+\frac{1}{30} n^{5}\)

This specification was found using the strategy pack "Point Placements" and has 75 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 75 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{13}\! \left(x \right) &= 0\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{24}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{18}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{38}\! \left(x \right)+F_{58}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{47}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{38}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{52}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{54}\! \left(x \right)+F_{58}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{65}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{44}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{68}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{30}\! \left(x \right)+F_{72}\! \left(x \right)\\ \end{align*}\)