Av(1234, 1243, 2134, 2413, 3142)
Generating Function
\(\displaystyle -\frac{\left(2 x -1\right) \left(x -1\right)^{2}}{2 x^{5}+x^{4}-6 x^{3}+8 x^{2}-5 x +1}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 160, 456, 1305, 3743, 10739, 30805, 88354, 253411, 726828, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{5}+x^{4}-6 x^{3}+8 x^{2}-5 x +1\right) F \! \left(x \right)+\left(2 x -1\right) \left(x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)-a \! \left(n +1\right)+6 a \! \left(n +2\right)-8 a \! \left(n +3\right)+5 a \! \left(n +4\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)-a \! \left(n +1\right)+6 a \! \left(n +2\right)-8 a \! \left(n +3\right)+5 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n +3}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n +2}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n +1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n -1}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n}}{91363}\)
This specification was found using the strategy pack "Point Placements" and has 73 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 73 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{13}\! \left(x \right) &= 0\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{21}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{21}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{42}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{64}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{69}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{68}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{69}\! \left(x \right)\\
\end{align*}\)