Av(1234, 1243, 2134, 2341, 4123)
Generating Function
\(\displaystyle \frac{-2 \left(x -\frac{1}{2}\right) \left(x -1\right)^{5} \sqrt{1-4 x}+4 x^{8}-8 x^{7}+6 x^{6}-15 x^{5}+27 x^{4}-30 x^{3}+20 x^{2}-7 x +1}{2 x \left(2 x -1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 59, 177, 531, 1640, 5270, 17564, 60213, 210663, 747863, 2683839, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(2 x -1\right)^{2} \left(x -1\right)^{10} F \left(x
\right)^{2}-\left(2 x -1\right) \left(4 x^{8}-8 x^{7}+6 x^{6}-15 x^{5}+27 x^{4}-30 x^{3}+20 x^{2}-7 x +1\right) \left(x -1\right)^{5} F \! \left(x \right)+4 x^{15}-16 x^{14}+28 x^{13}-50 x^{12}+78 x^{11}+19 x^{10}-428 x^{9}+1146 x^{8}-1812 x^{7}+1970 x^{6}-1536 x^{5}+861 x^{4}-339 x^{3}+89 x^{2}-14 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 177\)
\(\displaystyle a \! \left(7\right) = 531\)
\(\displaystyle a \! \left(8\right) = 1640\)
\(\displaystyle a \! \left(9\right) = 5270\)
\(\displaystyle a \! \left(10\right) = 17564\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 \left(2 n +1\right) a \! \left(n \right)}{n +4}-\frac{4 \left(5 n +8\right) a \! \left(n +1\right)}{n +4}+\frac{2 \left(4 n +11\right) a \! \left(n +2\right)}{n +4}-\frac{n \left(3 n^{4}-40 n^{3}-3 n^{2}+892 n -1308\right)}{24 \left(n +4\right)}, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 177\)
\(\displaystyle a \! \left(7\right) = 531\)
\(\displaystyle a \! \left(8\right) = 1640\)
\(\displaystyle a \! \left(9\right) = 5270\)
\(\displaystyle a \! \left(10\right) = 17564\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 \left(2 n +1\right) a \! \left(n \right)}{n +4}-\frac{4 \left(5 n +8\right) a \! \left(n +1\right)}{n +4}+\frac{2 \left(4 n +11\right) a \! \left(n +2\right)}{n +4}-\frac{n \left(3 n^{4}-40 n^{3}-3 n^{2}+892 n -1308\right)}{24 \left(n +4\right)}, \quad n \geq 11\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 172 rules.
Found on July 23, 2021.Finding the specification took 3 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 172 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{12}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{111}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{110}\! \left(x \right)+F_{49}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\
F_{13}\! \left(x , y\right) &= y x\\
F_{14}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{16}\! \left(x \right) &= 0\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{25}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{30}\! \left(x \right)+F_{38}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{30}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{43}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{38}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{12}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x , 1\right)\\
F_{51}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{100}\! \left(x , y\right)+F_{108}\! \left(x , y\right)+F_{52}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\
F_{52}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{53}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{54}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\
F_{54}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\
F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)+F_{9}\! \left(x \right)\\
F_{56}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)+F_{60}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{59}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{57}\! \left(x , y\right)\\
F_{60}\! \left(x , y\right) &= F_{61}\! \left(x , y\right)\\
F_{61}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{56}\! \left(x , y\right)\\
F_{62}\! \left(x , y\right) &= F_{14}\! \left(x \right)+F_{63}\! \left(x , y\right)\\
F_{63}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)+F_{67}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= F_{65}\! \left(x , y\right)\\
F_{65}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{66}\! \left(x , y\right)\\
F_{66}\! \left(x , y\right) &= F_{10}\! \left(x \right)+F_{64}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{68}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{63}\! \left(x , y\right)\\
F_{69}\! \left(x , y\right) &= F_{70}\! \left(x , y\right)+F_{81}\! \left(x , y\right)\\
F_{70}\! \left(x , y\right) &= F_{23}\! \left(x \right)+F_{71}\! \left(x , y\right)\\
F_{71}\! \left(x , y\right) &= F_{72}\! \left(x , y\right)+F_{77}\! \left(x , y\right)\\
F_{72}\! \left(x , y\right) &= F_{16}\! \left(x \right)+F_{73}\! \left(x , y\right)+F_{75}\! \left(x , y\right)\\
F_{73}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{74}\! \left(x , y\right)\\
F_{74}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)+F_{72}\! \left(x , y\right)\\
F_{75}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{76}\! \left(x , y\right)\\
F_{76}\! \left(x , y\right) &= F_{10}\! \left(x \right)+F_{72}\! \left(x , y\right)\\
F_{77}\! \left(x , y\right) &= 2 F_{16}\! \left(x \right)+F_{78}\! \left(x , y\right)+F_{80}\! \left(x , y\right)\\
F_{78}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{79}\! \left(x , y\right)\\
F_{79}\! \left(x , y\right) &= F_{60}\! \left(x , y\right)+F_{77}\! \left(x , y\right)\\
F_{80}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{71}\! \left(x , y\right)\\
F_{81}\! \left(x , y\right) &= F_{28}\! \left(x \right)+F_{82}\! \left(x , y\right)\\
F_{82}\! \left(x , y\right) &= F_{83}\! \left(x , y\right)+F_{88}\! \left(x , y\right)\\
F_{83}\! \left(x , y\right) &= 2 F_{16}\! \left(x \right)+F_{84}\! \left(x , y\right)+F_{86}\! \left(x , y\right)\\
F_{84}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{85}\! \left(x , y\right)\\
F_{85}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)+F_{83}\! \left(x , y\right)\\
F_{86}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{87}\! \left(x , y\right)\\
F_{87}\! \left(x , y\right) &= F_{24}\! \left(x \right)+F_{83}\! \left(x , y\right)\\
F_{88}\! \left(x , y\right) &= 3 F_{16}\! \left(x \right)+F_{89}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\
F_{89}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{90}\! \left(x , y\right)\\
F_{90}\! \left(x , y\right) &= F_{91}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\
F_{91}\! \left(x , y\right) &= F_{92}\! \left(x , y\right)\\
F_{92}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{93}\! \left(x , y\right)\\
F_{93}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)+F_{91}\! \left(x , y\right)\\
F_{94}\! \left(x , y\right) &= 3 F_{16}\! \left(x \right)+F_{89}\! \left(x , y\right)+F_{95}\! \left(x , y\right)\\
F_{95}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{96}\! \left(x , y\right)\\
F_{96}\! \left(x , y\right) &= F_{83}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\
F_{97}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{82}\! \left(x , y\right)\\
F_{98}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{99}\! \left(x , y\right)\\
F_{99}\! \left(x , y\right) &= -\frac{-y F_{51}\! \left(x , y\right)+F_{51}\! \left(x , 1\right)}{-1+y}\\
F_{100}\! \left(x , y\right) &= F_{101}\! \left(x , y\right) F_{13}\! \left(x , y\right)\\
F_{101}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{100}\! \left(x , y\right)+F_{102}\! \left(x , y\right)+F_{106}\! \left(x , y\right)\\
F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{12}\! \left(x \right)\\
F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{105}\! \left(x , y\right)\\
F_{104}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)+F_{66}\! \left(x , y\right)\\
F_{105}\! \left(x , y\right) &= F_{76}\! \left(x , y\right)+F_{87}\! \left(x , y\right)\\
F_{106}\! \left(x , y\right) &= F_{107}\! \left(x , y\right) F_{12}\! \left(x \right)\\
F_{107}\! \left(x , y\right) &= -\frac{-y F_{101}\! \left(x , y\right)+F_{101}\! \left(x , 1\right)}{-1+y}\\
F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right) F_{12}\! \left(x \right)\\
F_{109}\! \left(x , y\right) &= -\frac{-y F_{101}\! \left(x , y\right)+F_{101}\! \left(x , 1\right)}{-1+y}\\
F_{110}\! \left(x \right) &= F_{100}\! \left(x , 1\right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{125}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{12}\! \left(x \right) F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{124}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{115}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{12}\! \left(x \right) F_{129}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{133}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{12}\! \left(x \right) F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{136}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{132}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{12}\! \left(x \right) F_{127}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{166}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{12}\! \left(x \right) F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{12}\! \left(x \right) F_{143}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{156}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{12}\! \left(x \right) F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{150}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{12}\! \left(x \right) F_{154}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{153}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{12}\! \left(x \right) F_{157}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{159}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{16}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{161}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{162}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{12}\! \left(x \right) F_{163}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{165}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{167}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{12}\! \left(x \right) F_{169}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{168}\! \left(x \right)\\
\end{align*}\)