Av(1234, 1243, 1432, 3241)
Generating Function
\(\displaystyle \frac{2 x^{11}+7 x^{10}+16 x^{9}+19 x^{8}+14 x^{7}-3 x^{6}-11 x^{5}-7 x^{4}-x^{3}+2 x -1}{\left(x -1\right) \left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 60, 154, 367, 858, 1972, 4466, 10009, 22265, 49235, 108342, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+2 x^{11}+7 x^{10}+16 x^{9}+19 x^{8}+14 x^{7}-3 x^{6}-11 x^{5}-7 x^{4}-x^{3}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(6\right) = 154\)
\(\displaystyle a \! \left(7\right) = 367\)
\(\displaystyle a \! \left(8\right) = 858\)
\(\displaystyle a \! \left(9\right) = 1972\)
\(\displaystyle a \! \left(10\right) = 4466\)
\(\displaystyle a \! \left(11\right) = 10009\)
\(\displaystyle a \! \left(n +8\right) = -a \! \left(n \right)-3 a \! \left(n +1\right)-5 a \! \left(n +2\right)-4 a \! \left(n +3\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right)+a \! \left(n +6\right)+2 a \! \left(n +7\right)-37, \quad n \geq 12\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(6\right) = 154\)
\(\displaystyle a \! \left(7\right) = 367\)
\(\displaystyle a \! \left(8\right) = 858\)
\(\displaystyle a \! \left(9\right) = 1972\)
\(\displaystyle a \! \left(10\right) = 4466\)
\(\displaystyle a \! \left(11\right) = 10009\)
\(\displaystyle a \! \left(n +8\right) = -a \! \left(n \right)-3 a \! \left(n +1\right)-5 a \! \left(n +2\right)-4 a \! \left(n +3\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right)+a \! \left(n +6\right)+2 a \! \left(n +7\right)-37, \quad n \geq 12\)
Explicit Closed Form
\(\displaystyle \frac{273307 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +7}\right)}{49104}+\frac{56803 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +6}\right)}{4092}+\frac{866893 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +5}\right)}{49104}+\frac{130279 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{49104}-\frac{497495 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{49104}-\frac{133867 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{6138}-\frac{536927 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{49104}-\frac{61141 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{5456}+\frac{46009 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{4092}+\left(\left\{\begin{array}{cc}6 & n =0 \\ 3 & n =1 \\ 2 & n =2 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 243 rules.
Found on January 18, 2022.Finding the specification took 13 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 243 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{15}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{43}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{64}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{115}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{106}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{101}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{114}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{111}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{116}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{117}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{122}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{135}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{132}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{166}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{15}\! \left(x \right)+F_{165}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{144}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{145}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{146}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{150}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{156}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{143}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{160}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{164}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{221}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{168}\! \left(x \right)+F_{220}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{173}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{172}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{200}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{179}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{178}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{180}\! \left(x \right)\\
F_{180}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{181}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{182}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{184}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{190}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{178}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{186}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{195}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{184}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{197}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{199}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{184}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{196}\! \left(x \right)\\
F_{200}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{201}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{205}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{204}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{206}\! \left(x \right)+F_{211}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{208}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{210}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{171}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{206}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{215}\! \left(x \right)\\
F_{214}\! \left(x \right) &= F_{204}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{219}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{204}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{216}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{138}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{15}\! \left(x \right)+F_{222}\! \left(x \right)+F_{242}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{226}\! \left(x \right)+F_{34}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{226}\! \left(x \right) &= 0\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{233}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{232}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{228}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{237}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{225}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{241}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{225}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{238}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{167}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)