Av(1234, 1243, 1432, 2431, 4213)
Generating Function
\(\displaystyle -\frac{6 x^{11}+21 x^{10}+28 x^{9}+10 x^{8}-20 x^{7}-20 x^{6}+2 x^{5}+6 x^{4}+3 x^{3}-2 x +1}{\left(x -1\right) \left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 49, 96, 178, 339, 651, 1251, 2397, 4573, 8686, 16430, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+6 x^{11}+21 x^{10}+28 x^{9}+10 x^{8}-20 x^{7}-20 x^{6}+2 x^{5}+6 x^{4}+3 x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 49\)
\(\displaystyle a \! \left(6\right) = 96\)
\(\displaystyle a \! \left(7\right) = 178\)
\(\displaystyle a \! \left(8\right) = 339\)
\(\displaystyle a \! \left(9\right) = 651\)
\(\displaystyle a \! \left(10\right) = 1251\)
\(\displaystyle a \! \left(11\right) = 2397\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)+35, \quad n \geq 12\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 49\)
\(\displaystyle a \! \left(6\right) = 96\)
\(\displaystyle a \! \left(7\right) = 178\)
\(\displaystyle a \! \left(8\right) = 339\)
\(\displaystyle a \! \left(9\right) = 651\)
\(\displaystyle a \! \left(10\right) = 1251\)
\(\displaystyle a \! \left(11\right) = 2397\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)+35, \quad n \geq 12\)
Explicit Closed Form
\(\displaystyle \frac{1697 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+Z^{5}-Z^{4}-2 Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{4-n}\right)}{55}+\frac{5807 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+Z^{5}-Z^{4}-2 Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{110}+\frac{80 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+Z^{5}-Z^{4}-2 Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{11}-\frac{5943 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+Z^{5}-Z^{4}-2 Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{110}-\frac{729 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+Z^{5}-Z^{4}-2 Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{11}+\frac{5157 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+Z^{5}-Z^{4}-2 Z^{3}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{110}-\left(\left\{\begin{array}{cc}16 & n =0 \\ 17 & n =1 \\ 18 & n =2 \\ 19 & n =3 \\ 15 & n =4 \\ 6 & n =5 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 78 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 78 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{37}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{35}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{72}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{73}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
\end{align*}\)