Av(1234, 1243, 1432, 2314, 3241)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{9}+2 x^{8}+3 x^{7}-x^{6}-5 x^{5}-5 x^{4}-x^{3}-x^{2}+2 x -1}{\left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 116, 257, 563, 1223, 2640, 5683, 12222, 26270, 56443, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{9}+2 x^{8}+3 x^{7}-x^{6}-5 x^{5}-5 x^{4}-x^{3}-x^{2}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 116\)
\(\displaystyle a \! \left(7\right) = 257\)
\(\displaystyle a \! \left(8\right) = 563\)
\(\displaystyle a \! \left(9\right) = 1223\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)+2 a \! \left(n +1\right)+2 a \! \left(n +2\right)+a \! \left(n +3\right)+a \! \left(n +4\right)+6 n +28, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ \frac{\left(-93 \left(\left(\mathrm{I}-\frac{7 \sqrt{31}}{93}\right) \sqrt{3}-\frac{7 \,\mathrm{I} \sqrt{31}}{31}+1\right) 2^{\frac{2}{3}} \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+186+372 \left(\left(\mathrm{I}+\frac{19 \sqrt{31}}{186}\right) \sqrt{3}-\frac{19 \,\mathrm{I} \sqrt{31}}{62}-1\right) 2^{\frac{1}{3}} \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{29 \left(\left(\mathrm{I}+\frac{3 \sqrt{31}}{29}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{31}}{29}-1\right) 2^{\frac{1}{3}} \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{\mathrm{I} \sqrt{3}\, \left(116+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(116+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{2}{3}\right)^{-n}}{558}\\+\\\frac{\left(93 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{7 \sqrt{31}}{93}\right) \sqrt{3}-\frac{7 \,\mathrm{I} \sqrt{31}}{31}-1\right) \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+186-372 \left(\left(\mathrm{I}-\frac{19 \sqrt{31}}{186}\right) \sqrt{3}-\frac{19 \,\mathrm{I} \sqrt{31}}{62}+1\right) 2^{\frac{1}{3}} \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{29 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{31}}{29}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{31}}{29}+1\right) \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{\mathrm{I} \sqrt{3}\, \left(116+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(116+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{2}{3}\right)^{-n}}{558}\\+\\\frac{\left(\left(-14 \,2^{\frac{2}{3}} \sqrt{31}\, \sqrt{3}+186 \,2^{\frac{2}{3}}\right) \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+186+\left(-76 \,2^{\frac{1}{3}} \sqrt{3}\, \sqrt{31}+744 \,2^{\frac{1}{3}}\right) \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(-3 \sqrt{31}\, \sqrt{3}+29\right) 2^{\frac{1}{3}} \left(29+3 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}+\frac{\left(116+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{2}{3}\right)^{-n}}{558}\\-n -\frac{2 \cos \left(\frac{n \pi}{2}\right)}{3}+\frac{\sin \left(\frac{n \pi}{2}\right)}{3}-\frac{10}{3} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 101 rules.

Found on January 18, 2022.

Finding the specification took 3 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 101 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{68}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ \end{align*}\)