Av(1234, 1243, 1432, 2143, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{2 x^{12}+5 x^{11}+5 x^{10}-x^{9}-8 x^{8}-9 x^{7}+6 x^{5}+6 x^{4}+x^{3}-2 x +1}{\left(x -1\right) \left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 128, 302, 703, 1613, 3651, 8183, 18207, 40270, 88633, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+2 x^{12}+5 x^{11}+5 x^{10}-x^{9}-8 x^{8}-9 x^{7}+6 x^{5}+6 x^{4}+x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 128\)
\(\displaystyle a \! \left(7\right) = 302\)
\(\displaystyle a \! \left(8\right) = 703\)
\(\displaystyle a \! \left(9\right) = 1613\)
\(\displaystyle a \! \left(10\right) = 3651\)
\(\displaystyle a \! \left(11\right) = 8183\)
\(\displaystyle a \! \left(12\right) = 18207\)
\(\displaystyle a \! \left(n +8\right) = -a \! \left(n \right)-3 a \! \left(n +1\right)-5 a \! \left(n +2\right)-4 a \! \left(n +3\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right)+a \! \left(n +6\right)+2 a \! \left(n +7\right)+6, \quad n \geq 13\)
Explicit Closed Form
\(\displaystyle \frac{20203 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +7}\right)}{4092}+\frac{301633 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +6}\right)}{24552}+\frac{194827 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +5}\right)}{12276}+\frac{74821 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{24552}-\frac{64663 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{8184}-\frac{50037 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{2728}-\frac{38113 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{4092}-\frac{77917 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{8184}+\frac{231701 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{24552}-\left(\left\{\begin{array}{cc}1 & n =0 \\ -1 & n =1 \\ 1 & n =2 \\ 2 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 93 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 93 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{59}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{71}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{76}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{70}\! \left(x \right)+F_{87}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{84}\! \left(x \right)\\ \end{align*}\)