Av(1234, 1243, 1432, 2143, 2314)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{4}-x^{3}-2 x +1}{x^{7}-2 x^{3}+x^{2}-3 x +1}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 158, 456, 1319, 3815, 11032, 31900, 92243, 266735, 771306, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{7}-2 x^{3}+x^{2}-3 x +1\right) F \! \left(x \right)-x^{4}+x^{3}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 158\)
\(\displaystyle a \! \left(n \right) = 2 a \! \left(n +4\right)-a \! \left(n +5\right)+3 a \! \left(n +6\right)-a \! \left(n +7\right), \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{646059 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +5}}{32573282}+\frac{646059 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +5}}{32573282}+\frac{646059 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +5}}{32573282}+\frac{646059 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +5}}{32573282}+\frac{646059 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +5}}{32573282}+\frac{646059 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =6\right)^{-n +5}}{32573282}+\frac{646059 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =7\right)^{-n +5}}{32573282}-\frac{179107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +4}}{16286641}-\frac{179107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +4}}{16286641}-\frac{179107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +4}}{16286641}-\frac{179107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +4}}{16286641}-\frac{179107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +4}}{16286641}-\frac{179107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =6\right)^{-n +4}}{16286641}-\frac{179107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =7\right)^{-n +4}}{16286641}-\frac{2840885 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +3}}{32573282}-\frac{2840885 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +3}}{32573282}-\frac{2840885 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +3}}{32573282}-\frac{2840885 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +3}}{32573282}-\frac{2840885 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +3}}{32573282}-\frac{2840885 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =6\right)^{-n +3}}{32573282}-\frac{2840885 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =7\right)^{-n +3}}{32573282}-\frac{202135 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +2}}{16286641}-\frac{202135 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +2}}{16286641}-\frac{202135 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +2}}{16286641}-\frac{202135 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +2}}{16286641}-\frac{202135 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +2}}{16286641}-\frac{202135 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =6\right)^{-n +2}}{16286641}-\frac{202135 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =7\right)^{-n +2}}{16286641}+\frac{462107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n +1}}{32573282}+\frac{462107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =6\right)^{-n +1}}{32573282}+\frac{462107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =7\right)^{-n +1}}{32573282}+\frac{462107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n +1}}{32573282}+\frac{462107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n +1}}{32573282}+\frac{462107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n +1}}{32573282}+\frac{462107 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n +1}}{32573282}+\frac{664782 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n -1}}{16286641}+\frac{664782 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n -1}}{16286641}+\frac{664782 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n -1}}{16286641}+\frac{664782 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n -1}}{16286641}+\frac{664782 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n -1}}{16286641}+\frac{664782 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =6\right)^{-n -1}}{16286641}+\frac{664782 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =7\right)^{-n -1}}{16286641}+\frac{4954371 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =1\right)^{-n}}{32573282}+\frac{4954371 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =2\right)^{-n}}{32573282}+\frac{4954371 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =3\right)^{-n}}{32573282}+\frac{4954371 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =4\right)^{-n}}{32573282}+\frac{4954371 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =5\right)^{-n}}{32573282}+\frac{4954371 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =6\right)^{-n}}{32573282}+\frac{4954371 \mathit{RootOf} \left(Z^{7}-2 Z^{3}+Z^{2}-3 Z +1, \mathit{index} =7\right)^{-n}}{32573282}\)

This specification was found using the strategy pack "Point Placements" and has 63 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 63 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{54}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{46}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{47}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{57}\! \left(x \right)\\ \end{align*}\)