Av(1234, 1243, 1432, 2134, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{12}+2 x^{11}+2 x^{10}-4 x^{9}-11 x^{8}-12 x^{7}-4 x^{6}+4 x^{5}+6 x^{4}+x^{3}-2 x +1}{\left(x -1\right) \left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 118, 271, 617, 1389, 3096, 6854, 15100, 33129, 72432, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+1\right) \left(x^{3}+2 x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+x^{12}+2 x^{11}+2 x^{10}-4 x^{9}-11 x^{8}-12 x^{7}-4 x^{6}+4 x^{5}+6 x^{4}+x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 118\)
\(\displaystyle a \! \left(7\right) = 271\)
\(\displaystyle a \! \left(8\right) = 617\)
\(\displaystyle a \! \left(9\right) = 1389\)
\(\displaystyle a \! \left(10\right) = 3096\)
\(\displaystyle a \! \left(11\right) = 6854\)
\(\displaystyle a \! \left(12\right) = 15100\)
\(\displaystyle a \! \left(n +8\right) = -a \! \left(n \right)-3 a \! \left(n +1\right)-5 a \! \left(n +2\right)-4 a \! \left(n +3\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right)+a \! \left(n +6\right)+2 a \! \left(n +7\right)-16, \quad n \geq 13\)
Explicit Closed Form
\(\displaystyle \frac{1669 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +7}\right)}{528}+\frac{12373 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +6}\right)}{1584}+\frac{1777 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +5}\right)}{176}+\frac{1205 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{792}-\frac{4453 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{792}-\frac{19697 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{1584}-\frac{9263 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{1584}-\frac{5131 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{792}+\frac{1137 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+2 Z^{8}+2 Z^{7}-Z^{6}-2 Z^{5}-3 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{176}-\left(\left\{\begin{array}{cc}-3 & n =0 \\ 1 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 100 rules.

Found on January 18, 2022.

Finding the specification took 3 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 100 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{27}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{53}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{41}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{68}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{41}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= x^{2}\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{68}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{52}\! \left(x \right)+F_{88}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ \end{align*}\)