Av(1234, 1243, 1432, 2134, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{2}+x -1}{x^{8}+3 x^{7}+3 x^{6}-x^{5}-4 x^{4}-x^{3}-x^{2}-2 x +1}\)
Counting Sequence
1, 1, 2, 6, 19, 51, 133, 356, 968, 2623, 7076, 19084, 51524, 139150, 375730, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{8}+3 x^{7}+3 x^{6}-x^{5}-4 x^{4}-x^{3}-x^{2}-2 x +1\right) F \! \left(x \right)+x^{2}+x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 51\)
\(\displaystyle a \! \left(6\right) = 133\)
\(\displaystyle a \! \left(7\right) = 356\)
\(\displaystyle a \! \left(n +8\right) = -a \! \left(n \right)-3 a \! \left(n +1\right)-3 a \! \left(n +2\right)+a \! \left(n +3\right)+4 a \! \left(n +4\right)+a \! \left(n +5\right)+a \! \left(n +6\right)+2 a \! \left(n +7\right), \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n +6}}{61270354}+\frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n +6}}{61270354}+\frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n +6}}{61270354}+\frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n +6}}{61270354}+\frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n +6}}{61270354}+\frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n +6}}{61270354}+\frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n +6}}{61270354}+\frac{3217899 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n +6}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n +5}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n +5}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n +5}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n +5}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n +5}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n +5}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n +5}}{61270354}+\frac{3843659 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n +5}}{61270354}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n +4}}{30635177}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n +4}}{30635177}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n +4}}{30635177}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n +4}}{30635177}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n +4}}{30635177}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n +4}}{30635177}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n +4}}{30635177}-\frac{970296 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n +4}}{30635177}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n +3}}{61270354}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n +3}}{61270354}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n +3}}{61270354}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n +3}}{61270354}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n +3}}{61270354}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n +3}}{61270354}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n +3}}{61270354}-\frac{12994139 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n +3}}{61270354}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n +2}}{30635177}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n +2}}{30635177}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n +2}}{30635177}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n +2}}{30635177}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n +2}}{30635177}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n +2}}{30635177}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n +2}}{30635177}-\frac{2762665 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n +2}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n +1}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n +1}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n +1}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n +1}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n +1}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n +1}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n +1}}{30635177}+\frac{3691396 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n +1}}{30635177}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n -1}}{61270354}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n -1}}{61270354}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n -1}}{61270354}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n -1}}{61270354}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n -1}}{61270354}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n -1}}{61270354}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n -1}}{61270354}+\frac{6280513 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n -1}}{61270354}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =1\right)^{-n}}{30635177}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =2\right)^{-n}}{30635177}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =3\right)^{-n}}{30635177}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =4\right)^{-n}}{30635177}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =5\right)^{-n}}{30635177}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =6\right)^{-n}}{30635177}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =7\right)^{-n}}{30635177}+\frac{1383910 \mathit{RootOf} \left(Z^{8}+3 Z^{7}+3 Z^{6}-Z^{5}-4 Z^{4}-Z^{3}-Z^{2}-2 Z +1, \mathit{index} =8\right)^{-n}}{30635177}\)

This specification was found using the strategy pack "Point Placements" and has 75 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 75 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{40}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{46}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{40}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{44}\! \left(x \right)+F_{58}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= x^{2}\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ \end{align*}\)