Av(1234, 1243, 1432)
View Raw Data
Generating Function
x6+5x412x3+12x26x+12x513x4+21x317x2+7x1
Counting Sequence
1, 1, 2, 6, 21, 76, 278, 1021, 3756, 13827, 50916, 187512, 690593, 2543444, 9367525, ...
Implicit Equation for the Generating Function
(2x513x4+21x317x2+7x1)F(x)+x6+5x412x3+12x26x+1=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=6
a(4)=21
a(5)=76
a(6)=278
a(n+5)=2a(n)13a(n+1)+21a(n+2)17a(n+3)+7a(n+4),n7
Explicit Closed Form
37364RootOf(2Z513Z4+21Z317Z2+7Z1,index=1)n126571+37364RootOf(2Z513Z4+21Z317Z2+7Z1,index=2)n126571+37364RootOf(2Z513Z4+21Z317Z2+7Z1,index=3)n126571+37364RootOf(2Z513Z4+21Z317Z2+7Z1,index=4)n126571+37364RootOf(2Z513Z4+21Z317Z2+7Z1,index=5)n12657160644RootOf(2Z513Z4+21Z317Z2+7Z1,index=1)1n12657160644RootOf(2Z513Z4+21Z317Z2+7Z1,index=2)1n12657160644RootOf(2Z513Z4+21Z317Z2+7Z1,index=3)1n12657160644RootOf(2Z513Z4+21Z317Z2+7Z1,index=4)1n12657160644RootOf(2Z513Z4+21Z317Z2+7Z1,index=5)1n1265713041RootOf(2Z513Z4+21Z317Z2+7Z1,index=1)n11265713041RootOf(2Z513Z4+21Z317Z2+7Z1,index=2)n11265713041RootOf(2Z513Z4+21Z317Z2+7Z1,index=3)n11265713041RootOf(2Z513Z4+21Z317Z2+7Z1,index=4)n11265713041RootOf(2Z513Z4+21Z317Z2+7Z1,index=5)n1126571+60239RootOf(2Z513Z4+21Z317Z2+7Z1,index=1)n+2126571+60239RootOf(2Z513Z4+21Z317Z2+7Z1,index=2)n+2126571+60239RootOf(2Z513Z4+21Z317Z2+7Z1,index=3)n+2126571+60239RootOf(2Z513Z4+21Z317Z2+7Z1,index=4)n+2126571+60239RootOf(2Z513Z4+21Z317Z2+7Z1,index=5)n+21265715384RootOf(2Z513Z4+21Z317Z2+7Z1,index=1)n+31265715384RootOf(2Z513Z4+21Z317Z2+7Z1,index=2)n+31265715384RootOf(2Z513Z4+21Z317Z2+7Z1,index=3)n+31265715384RootOf(2Z513Z4+21Z317Z2+7Z1,index=4)n+31265715384RootOf(2Z513Z4+21Z317Z2+7Z1,index=5)n+3126571({132n=01n=10otherwise)2

This specification was found using the strategy pack "Point Placements" and has 183 rules.

Found on January 18, 2022.

Finding the specification took 26 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 183 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F19(x)+F6(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F9(x)F9(x)=F10(x)+F11(x)F10(x)=F1(x)+F4(x)F11(x)=F12(x)+F14(x)F12(x)=F13(x)F13(x)=F10(x)F4(x)F14(x)=F15(x)+F16(x)+F18(x)F15(x)=0F16(x)=F17(x)F4(x)F17(x)=F4(x)F18(x)=F12(x)F4(x)F19(x)=F2(x)+F20(x)F20(x)=F15(x)+F181(x)+F21(x)F21(x)=F22(x)F4(x)F22(x)=F23(x)+F34(x)F23(x)=F24(x)+F7(x)F24(x)=F15(x)+F25(x)+F28(x)F25(x)=F26(x)F4(x)F26(x)=F17(x)+F27(x)F27(x)=F14(x)F28(x)=F29(x)F4(x)F29(x)=F11(x)+F30(x)F30(x)=F31(x)+F32(x)F31(x)=F16(x)F32(x)=F33(x)F33(x)=F31(x)F4(x)F34(x)=F20(x)+F35(x)F35(x)=F140(x)+F15(x)+F179(x)+F36(x)F36(x)=F37(x)F4(x)F37(x)=F38(x)+F46(x)F38(x)=F24(x)+F39(x)F39(x)=F15(x)+F40(x)+F41(x)+F44(x)F40(x)=0F41(x)=F4(x)F42(x)F42(x)=F27(x)+F43(x)F43(x)=F32(x)F44(x)=F4(x)F45(x)F45(x)=F30(x)F46(x)=F35(x)+F47(x)F47(x)=F138(x)+F15(x)+F177(x)+F48(x)+F92(x)F48(x)=F4(x)F49(x)F49(x)=F50(x)+F54(x)F50(x)=F39(x)+F51(x)F51(x)=F52(x)F52(x)=F4(x)F53(x)F53(x)=F43(x)F54(x)=F47(x)+F55(x)F55(x)=F15(x)+F176(x)+F56(x)+F60(x)+F61(x)+F62(x)F56(x)=F4(x)F57(x)F57(x)=F58(x)+F59(x)F58(x)=F51(x)F59(x)=F55(x)F60(x)=0F61(x)=0F62(x)=F4(x)F63(x)F63(x)=F64(x)F64(x)=F65(x)F65(x)=2F15(x)+F66(x)+F70(x)+F71(x)F66(x)=F4(x)F67(x)F67(x)=F68(x)+F69(x)F68(x)=F32(x)F69(x)=F65(x)F70(x)=0F71(x)=F4(x)F72(x)F72(x)=2F15(x)+F113(x)+F73(x)F73(x)=F4(x)F74(x)F74(x)=F75(x)+F78(x)F75(x)=F31(x)+F76(x)F76(x)=F77(x)F77(x)=F27(x)F4(x)F78(x)=F72(x)+F79(x)F79(x)=2F15(x)+F80(x)+F92(x)+F93(x)F80(x)=F4(x)F81(x)F81(x)=F82(x)+F85(x)F82(x)=F76(x)+F83(x)F83(x)=F84(x)F84(x)=F4(x)F43(x)F85(x)=F79(x)+F86(x)F86(x)=2F15(x)+F60(x)+F61(x)+F87(x)+F91(x)F87(x)=F4(x)F88(x)F88(x)=F89(x)+F90(x)F89(x)=F83(x)F90(x)=F86(x)F91(x)=F4(x)F64(x)F92(x)=0F93(x)=F4(x)F94(x)F94(x)=F95(x)F95(x)=F113(x)+F142(x)+F15(x)+F96(x)F96(x)=F4(x)F97(x)F97(x)=F100(x)+F98(x)F98(x)=F14(x)+F99(x)F99(x)=F15(x)+F33(x)+F40(x)+F77(x)F100(x)=F101(x)+F95(x)F101(x)=F102(x)+F15(x)+F71(x)+F92(x)+F93(x)F102(x)=F103(x)F4(x)F103(x)=F104(x)+F106(x)F104(x)=F105(x)+F99(x)F105(x)=F84(x)F106(x)=F101(x)+F107(x)F107(x)=F108(x)+F112(x)+F15(x)+F60(x)+F61(x)+F91(x)F108(x)=F109(x)F4(x)F109(x)=F110(x)+F111(x)F110(x)=F105(x)F111(x)=F107(x)F112(x)=0F113(x)=F114(x)F4(x)F114(x)=F115(x)F115(x)=F116(x)+F15(x)+F175(x)F116(x)=F117(x)F4(x)F117(x)=F118(x)+F120(x)F118(x)=F119(x)+F4(x)F119(x)=F15(x)+F18(x)+F25(x)F120(x)=F115(x)+F121(x)F121(x)=F122(x)+F140(x)+F142(x)+F15(x)F122(x)=F123(x)F4(x)F123(x)=F124(x)+F126(x)F124(x)=F119(x)+F125(x)F125(x)=F15(x)+F33(x)+F40(x)+F41(x)F126(x)=F121(x)+F127(x)F127(x)=F128(x)+F138(x)+F15(x)+F71(x)+F92(x)F128(x)=F129(x)F4(x)F129(x)=F130(x)+F132(x)F130(x)=F125(x)+F131(x)F131(x)=F52(x)F132(x)=F127(x)+F133(x)F133(x)=F112(x)+F134(x)+F15(x)+F60(x)+F61(x)+F62(x)F134(x)=F135(x)F4(x)F135(x)=F136(x)+F137(x)F136(x)=F131(x)F137(x)=F133(x)F138(x)=F139(x)F4(x)F139(x)=F64(x)+F94(x)F140(x)=F141(x)F4(x)F141(x)=F114(x)+F94(x)F142(x)=F143(x)F4(x)F143(x)=F144(x)+F15(x)+F173(x)F144(x)=F145(x)F4(x)F145(x)=F146(x)+F149(x)F146(x)=F12(x)+F147(x)F147(x)=F148(x)+F15(x)+F25(x)F148(x)=F11(x)F4(x)F149(x)=F143(x)+F150(x)F150(x)=F140(x)+F15(x)+F151(x)+F171(x)F151(x)=F152(x)F4(x)F152(x)=F153(x)+F156(x)F153(x)=F147(x)+F154(x)F154(x)=F15(x)+F155(x)+F40(x)+F41(x)F155(x)=F30(x)F4(x)F156(x)=F150(x)+F157(x)F157(x)=F138(x)+F15(x)+F158(x)+F169(x)+F92(x)F158(x)=F159(x)F4(x)F159(x)=F160(x)+F162(x)F160(x)=F154(x)+F161(x)F161(x)=F52(x)F162(x)=F157(x)+F163(x)F163(x)=F15(x)+F164(x)+F168(x)+F60(x)+F61(x)+F62(x)F164(x)=F165(x)F4(x)F165(x)=F166(x)+F167(x)F166(x)=F161(x)F167(x)=F163(x)F168(x)=0F169(x)=F170(x)F4(x)F170(x)=F65(x)+F72(x)F171(x)=F172(x)F4(x)F172(x)=F143(x)+F95(x)F173(x)=F174(x)F4(x)F174(x)=F115(x)+F2(x)F175(x)=F2(x)F4(x)F176(x)=0F177(x)=F178(x)F4(x)F178(x)=F170(x)F179(x)=F180(x)F4(x)F180(x)=F170(x)+F172(x)F181(x)=F182(x)F4(x)F182(x)=F172(x)+F174(x)