Av(1234, 1243, 1342, 3412, 4123)
Generating Function
\(\displaystyle -\frac{3 x^{5}-12 x^{4}+18 x^{3}-15 x^{2}+6 x -1}{\left(2 x -1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 151, 377, 886, 1989, 4316, 9136, 18997, 39006, 79389, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x -1\right)^{5} F \! \left(x \right)+3 x^{5}-12 x^{4}+18 x^{3}-15 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n +4\right) \left(n^{2}-n +6\right)}{24}, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n +4\right) \left(n^{2}-n +6\right)}{24}, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle -4-\frac{15 n}{4}-\frac{23 n^{2}}{24}-\frac{n^{3}}{4}-\frac{n^{4}}{24}+5 \,2^{n}\)
This specification was found using the strategy pack "Row And Col Placements" and has 43 rules.
Found on July 23, 2021.Finding the specification took 11 seconds.
Copy 43 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{6}\! \left(x \right) &= x\\
F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{6}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{12}\! \left(x \right)+F_{15}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 0\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{19}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{27}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{25}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{12}\! \left(x \right) F_{32}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{18}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{42}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{32}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\
\end{align*}\)