Av(1234, 1243, 1342, 3241, 4132)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x +1\right) \left(x^{12}-5 x^{10}-x^{9}+6 x^{8}+9 x^{7}-14 x^{5}+9 x^{4}-9 x^{3}+10 x^{2}-5 x +1\right)}{\left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 51, 110, 219, 423, 806, 1526, 2879, 5419, 10180, 19088, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+\left(x +1\right) \left(x^{12}-5 x^{10}-x^{9}+6 x^{8}+9 x^{7}-14 x^{5}+9 x^{4}-9 x^{3}+10 x^{2}-5 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 51\)
\(\displaystyle a \! \left(6\right) = 110\)
\(\displaystyle a \! \left(7\right) = 219\)
\(\displaystyle a \! \left(8\right) = 423\)
\(\displaystyle a \! \left(9\right) = 806\)
\(\displaystyle a \! \left(10\right) = 1526\)
\(\displaystyle a \! \left(11\right) = 2879\)
\(\displaystyle a \! \left(12\right) = 5419\)
\(\displaystyle a \! \left(13\right) = 10180\)
\(\displaystyle a \! \left(n +5\right) = 2 n^{2}-a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)+a \! \left(n +3\right)+2 a \! \left(n +4\right)-12 n -8, \quad n \geq 14\)
Explicit Closed Form
\(\displaystyle -3-\frac{1029 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{110}-\frac{1328 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{55}-\frac{1288 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{55}-\frac{483 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{110}+\frac{901 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}+2 Z^{4}+Z^{3}-Z^{2}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{55}-4 n +n^{2}+\left(\left\{\begin{array}{cc}4 & n =0 \\ 5 & n =1 \\ 4 & n =2 \\ 1 & n =3 \\ -2 & n =4 \\ -1 & n =5 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 117 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 117 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{26}\! \left(x \right) &= 0\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{34}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{35}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{39}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{42}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{57}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{31}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{7}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{39}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{82}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{39}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{55}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{31}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{39}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{101}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{108}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{108}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{112}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{108}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{48}\! \left(x \right)\\ \end{align*}\)